251 lines
18 KiB
HTML
251 lines
18 KiB
HTML
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
|
||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||
<title>Newton’s method — Thun 0.1.1 documentation</title>
|
||
<link rel="stylesheet" href="../_static/alabaster.css" type="text/css" />
|
||
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
|
||
<script type="text/javascript" src="../_static/documentation_options.js"></script>
|
||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||
<link rel="index" title="Index" href="../genindex.html" />
|
||
<link rel="search" title="Search" href="../search.html" />
|
||
<link rel="next" title="Quadratic formula" href="Quadratic.html" />
|
||
<link rel="prev" title="Treating Trees" href="Trees.html" />
|
||
|
||
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
|
||
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
|
||
|
||
</head><body>
|
||
|
||
|
||
<div class="document">
|
||
<div class="documentwrapper">
|
||
<div class="bodywrapper">
|
||
<div class="body" role="main">
|
||
|
||
<div class="section" id="newton-s-method">
|
||
<h1><a class="reference external" href="https://en.wikipedia.org/wiki/Newton%27s_method">Newton’s method</a><a class="headerlink" href="#newton-s-method" title="Permalink to this headline">¶</a></h1>
|
||
<p>Newton-Raphson for finding the root of an equation.</p>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">notebook_preamble</span> <span class="k">import</span> <span class="n">J</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">define</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Cf. <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
|
||
Hughes</a></p>
|
||
<div class="section" id="finding-the-square-root-of-a-number">
|
||
<h2>Finding the Square-Root of a Number<a class="headerlink" href="#finding-the-square-root-of-a-number" title="Permalink to this headline">¶</a></h2>
|
||
<p>Let’s define a function that computes this equation:</p>
|
||
<p><span class="math notranslate nohighlight">\(a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}\)</span></p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">n</span> <span class="n">a</span> <span class="n">Q</span>
|
||
<span class="o">---------------</span>
|
||
<span class="p">(</span><span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
|
||
|
||
<span class="n">n</span> <span class="n">a</span> <span class="n">tuck</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span> <span class="n">n</span> <span class="n">a</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span> <span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="p">(</span><span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>We want it to leave n but replace a, so we execute it with <code class="docutils literal notranslate"><span class="pre">unary</span></code>:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Q</span> <span class="o">==</span> <span class="p">[</span><span class="n">tuck</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">unary</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'Q == [tuck / + 2 /] unary'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="compute-the-error">
|
||
<h2>Compute the Error<a class="headerlink" href="#compute-the-error" title="Permalink to this headline">¶</a></h2>
|
||
<p>And a function to compute the error:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">n</span> <span class="n">a</span> <span class="n">sqr</span> <span class="o">-</span> <span class="nb">abs</span>
|
||
<span class="o">|</span><span class="n">n</span><span class="o">-</span><span class="n">a</span><span class="o">**</span><span class="mi">2</span><span class="o">|</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>This should be <code class="docutils literal notranslate"><span class="pre">nullary</span></code> so as to leave both n and a on the stack
|
||
below the error.</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">err</span> <span class="o">==</span> <span class="p">[</span><span class="n">sqr</span> <span class="o">-</span> <span class="nb">abs</span><span class="p">]</span> <span class="n">nullary</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'err == [sqr - abs] nullary'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="square-root">
|
||
<h2><code class="docutils literal notranslate"><span class="pre">square-root</span></code><a class="headerlink" href="#square-root" title="Permalink to this headline">¶</a></h2>
|
||
<p>Now we can define a recursive program that expects a number <code class="docutils literal notranslate"><span class="pre">n</span></code>, an
|
||
initial estimate <code class="docutils literal notranslate"><span class="pre">a</span></code>, and an epsilon value <code class="docutils literal notranslate"><span class="pre">ε</span></code>, and that leaves on
|
||
the stack the square root of <code class="docutils literal notranslate"><span class="pre">n</span></code> to within the precision of the
|
||
epsilon value. (Later on we’ll refine it to generate the initial
|
||
estimate and hard-code an epsilon value.)</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>n a ε square-root
|
||
-----------------
|
||
√n
|
||
</pre></div>
|
||
</div>
|
||
<p>If we apply the two functions <code class="docutils literal notranslate"><span class="pre">Q</span></code> and <code class="docutils literal notranslate"><span class="pre">err</span></code> defined above we get the
|
||
next approximation and the error on the stack below the epsilon.</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">n</span> <span class="n">a</span> <span class="n">ε</span> <span class="p">[</span><span class="n">Q</span> <span class="n">err</span><span class="p">]</span> <span class="n">dip</span>
|
||
<span class="n">n</span> <span class="n">a</span> <span class="n">Q</span> <span class="n">err</span> <span class="n">ε</span>
|
||
<span class="n">n</span> <span class="n">a</span><span class="s1">' err ε</span>
|
||
<span class="n">n</span> <span class="n">a</span><span class="s1">' e ε</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Let’s define a recursive function <code class="docutils literal notranslate"><span class="pre">K</span></code> from here.</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">n</span> <span class="n">a</span><span class="s1">' e ε K</span>
|
||
|
||
<span class="n">K</span> <span class="o">==</span> <span class="p">[</span><span class="n">P</span><span class="p">]</span> <span class="p">[</span><span class="n">E</span><span class="p">]</span> <span class="p">[</span><span class="n">R0</span><span class="p">]</span> <span class="p">[</span><span class="n">R1</span><span class="p">]</span> <span class="n">genrec</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="section" id="base-case">
|
||
<h3>Base-case<a class="headerlink" href="#base-case" title="Permalink to this headline">¶</a></h3>
|
||
<p>The predicate and the base case are obvious:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">K</span> <span class="o">==</span> <span class="p">[</span><span class="o"><</span><span class="p">]</span> <span class="p">[</span><span class="n">popop</span> <span class="n">popd</span><span class="p">]</span> <span class="p">[</span><span class="n">R0</span><span class="p">]</span> <span class="p">[</span><span class="n">R1</span><span class="p">]</span> <span class="n">genrec</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">n</span> <span class="n">a</span><span class="s1">' e ε popop popd</span>
|
||
<span class="n">n</span> <span class="n">a</span><span class="s1">' popd</span>
|
||
<span class="n">a</span><span class="s1">'</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="recur">
|
||
<h3>Recur<a class="headerlink" href="#recur" title="Permalink to this headline">¶</a></h3>
|
||
<p>The recursive branch is pretty easy. Discard the error and recur.</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">K</span> <span class="o">==</span> <span class="p">[</span><span class="o"><</span><span class="p">]</span> <span class="p">[</span><span class="n">popop</span> <span class="n">popd</span><span class="p">]</span> <span class="p">[</span><span class="n">R0</span><span class="p">]</span> <span class="p">[</span><span class="n">R1</span><span class="p">]</span> <span class="n">genrec</span>
|
||
<span class="n">K</span> <span class="o">==</span> <span class="p">[</span><span class="o"><</span><span class="p">]</span> <span class="p">[</span><span class="n">popop</span> <span class="n">popd</span><span class="p">]</span> <span class="p">[</span><span class="n">R0</span> <span class="p">[</span><span class="n">K</span><span class="p">]</span> <span class="n">R1</span><span class="p">]</span> <span class="n">ifte</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">n</span> <span class="n">a</span><span class="s1">' e ε R0 [K] R1</span>
|
||
<span class="n">n</span> <span class="n">a</span><span class="s1">' e ε popd [Q err] dip [K] i</span>
|
||
<span class="n">n</span> <span class="n">a</span><span class="s1">' ε [Q err] dip [K] i</span>
|
||
<span class="n">n</span> <span class="n">a</span><span class="s1">' Q err ε [K] i</span>
|
||
<span class="n">n</span> <span class="n">a</span><span class="s1">''</span> <span class="n">e</span> <span class="n">ε</span> <span class="n">K</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>This fragment alone is pretty useful. (<code class="docutils literal notranslate"><span class="pre">R1</span></code> is <code class="docutils literal notranslate"><span class="pre">i</span></code> so this is a <code class="docutils literal notranslate"><span class="pre">primrec</span></code> “primitive recursive” function.)</p>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'K == [<] [popop popd] [popd [Q err] dip] primrec'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'25 10 0.001 dup K'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">5.000000232305737</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'25 10 0.000001 dup K'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">5.000000000000005</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="initial-approximation-and-epsilon">
|
||
<h3>Initial Approximation and Epsilon<a class="headerlink" href="#initial-approximation-and-epsilon" title="Permalink to this headline">¶</a></h3>
|
||
<p>So now all we need is a way to generate an initial approximation and an
|
||
epsilon value:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">square</span><span class="o">-</span><span class="n">root</span> <span class="o">==</span> <span class="n">dup</span> <span class="mi">3</span> <span class="o">/</span> <span class="mf">0.000001</span> <span class="n">dup</span> <span class="n">K</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'square-root == dup 3 / 0.000001 dup K'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="examples">
|
||
<h3>Examples<a class="headerlink" href="#examples" title="Permalink to this headline">¶</a></h3>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'36 square-root'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">6.000000000000007</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'4895048365636 square-root'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">2212475.6192184356</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">2212475.6192184356</span> <span class="o">*</span> <span class="mf">2212475.6192184356</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4895048365636.0</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||
<div class="sphinxsidebarwrapper">
|
||
<h3><a href="../index.html">Table Of Contents</a></h3>
|
||
<ul>
|
||
<li><a class="reference internal" href="#">Newton’s method</a><ul>
|
||
<li><a class="reference internal" href="#finding-the-square-root-of-a-number">Finding the Square-Root of a Number</a></li>
|
||
<li><a class="reference internal" href="#compute-the-error">Compute the Error</a></li>
|
||
<li><a class="reference internal" href="#square-root"><code class="docutils literal notranslate"><span class="pre">square-root</span></code></a><ul>
|
||
<li><a class="reference internal" href="#base-case">Base-case</a></li>
|
||
<li><a class="reference internal" href="#recur">Recur</a></li>
|
||
<li><a class="reference internal" href="#initial-approximation-and-epsilon">Initial Approximation and Epsilon</a></li>
|
||
<li><a class="reference internal" href="#examples">Examples</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
<div class="relations">
|
||
<h3>Related Topics</h3>
|
||
<ul>
|
||
<li><a href="../index.html">Documentation overview</a><ul>
|
||
<li><a href="index.html">Essays about Programming in Joy</a><ul>
|
||
<li>Previous: <a href="Trees.html" title="previous chapter">Treating Trees</a></li>
|
||
<li>Next: <a href="Quadratic.html" title="next chapter">Quadratic formula</a></li>
|
||
</ul></li>
|
||
</ul></li>
|
||
</ul>
|
||
</div>
|
||
<div role="note" aria-label="source link">
|
||
<h3>This Page</h3>
|
||
<ul class="this-page-menu">
|
||
<li><a href="../_sources/notebooks/Newton-Raphson.rst.txt"
|
||
rel="nofollow">Show Source</a></li>
|
||
</ul>
|
||
</div>
|
||
<div id="searchbox" style="display: none" role="search">
|
||
<h3>Quick search</h3>
|
||
<div class="searchformwrapper">
|
||
<form class="search" action="../search.html" method="get">
|
||
<input type="text" name="q" />
|
||
<input type="submit" value="Go" />
|
||
<input type="hidden" name="check_keywords" value="yes" />
|
||
<input type="hidden" name="area" value="default" />
|
||
</form>
|
||
</div>
|
||
</div>
|
||
<script type="text/javascript">$('#searchbox').show(0);</script>
|
||
</div>
|
||
</div>
|
||
<div class="clearer"></div>
|
||
</div>
|
||
<div class="footer" role="contentinfo">
|
||
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">
|
||
<img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" />
|
||
</a>
|
||
<br />
|
||
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Thun Documentation</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://joypy.osdn.io/" property="cc:attributionName" rel="cc:attributionURL">Simon Forman</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://osdn.net/projects/joypy/" rel="dct:source">https://osdn.net/projects/joypy/</a>.
|
||
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.3.
|
||
</div>
|
||
|
||
</body>
|
||
</html> |