Newton’s method¶
Newton-Raphson for finding the root of an equation.
from notebook_preamble import J, V, define
Cf. “Why Functional Programming Matters” by John Hughes
Finding the Square-Root of a Number¶
Let’s define a function that computes this equation:
\(a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}\)
n a Q
---------------
(a+n/a)/2
n a tuck / + 2 /
a n a / + 2 /
a n/a + 2 /
a+n/a 2 /
(a+n/a)/2
We want it to leave n but replace a, so we execute it with unary:
Q == [tuck / + 2 /] unary
define('Q == [tuck / + 2 /] unary')
Compute the Error¶
And a function to compute the error:
n a sqr - abs
|n-a**2|
This should be nullary so as to leave both n and a on the stack
below the error.
err == [sqr - abs] nullary
define('err == [sqr - abs] nullary')
square-root¶
Now we can define a recursive program that expects a number n, an
initial estimate a, and an epsilon value ε, and that leaves on
the stack the square root of n to within the precision of the
epsilon value. (Later on we’ll refine it to generate the initial
estimate and hard-code an epsilon value.)
n a ε square-root
-----------------
√n
If we apply the two functions Q and err defined above we get the
next approximation and the error on the stack below the epsilon.
n a ε [Q err] dip
n a Q err ε
n a' err ε
n a' e ε
Let’s define a recursive function K from here.
n a' e ε K
K == [P] [E] [R0] [R1] genrec
Base-case¶
The predicate and the base case are obvious:
K == [<] [popop popd] [R0] [R1] genrec
n a' e ε popop popd
n a' popd
a'
Recur¶
The recursive branch is pretty easy. Discard the error and recur.
K == [<] [popop popd] [R0] [R1] genrec
K == [<] [popop popd] [R0 [K] R1] ifte
n a' e ε R0 [K] R1
n a' e ε popd [Q err] dip [K] i
n a' ε [Q err] dip [K] i
n a' Q err ε [K] i
n a'' e ε K
This fragment alone is pretty useful. (R1 is i so this is a primrec “primitive recursive” function.)
define('K == [<] [popop popd] [popd [Q err] dip] primrec')
J('25 10 0.001 dup K')
5.000000232305737
J('25 10 0.000001 dup K')
5.000000000000005
Initial Approximation and Epsilon¶
So now all we need is a way to generate an initial approximation and an epsilon value:
square-root == dup 3 / 0.000001 dup K
define('square-root == dup 3 / 0.000001 dup K')
Examples¶
J('36 square-root')
6.000000000000007
J('4895048365636 square-root')
2212475.6192184356
2212475.6192184356 * 2212475.6192184356
4895048365636.0