466 lines
11 KiB
Markdown
466 lines
11 KiB
Markdown
# Treating Trees II: `treestep`
|
|
Let's consider a tree structure, similar to one described ["Why functional programming matters" by John Hughes](https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf), that consists of a node value followed by zero or more child trees. (The asterisk is meant to indicate the [Kleene star](https://en.wikipedia.org/wiki/Kleene_star).)
|
|
|
|
tree = [] | [node tree*]
|
|
|
|
In the spirit of `step` we are going to define a combinator `treestep` which expects a tree and three additional items: a base-case function `[B]`, and two quoted programs `[N]` and `[C]`.
|
|
|
|
tree [B] [N] [C] treestep
|
|
|
|
If the current tree node is empty then just execute `B`:
|
|
|
|
[] [B] [N] [C] treestep
|
|
---------------------------
|
|
[] B
|
|
|
|
Otherwise, evaluate `N` on the node value, `map` the whole function (abbreviated here as `K`) over the child trees recursively, and then combine the result with `C`.
|
|
|
|
[node tree*] [B] [N] [C] treestep
|
|
--------------------------------------- w/ K == [B] [N] [C] treestep
|
|
node N [tree*] [K] map C
|
|
|
|
(Later on we'll experiment with making `map` part of `C` so you can use other combinators.)
|
|
|
|
## Derive the recursive function.
|
|
We can begin to derive it by finding the `ifte` stage that `genrec` will produce.
|
|
|
|
K == [not] [B] [R0] [R1] genrec
|
|
== [not] [B] [R0 [K] R1] ifte
|
|
|
|
So we just have to derive `J`:
|
|
|
|
J == R0 [K] R1
|
|
|
|
The behavior of `J` is to accept a (non-empty) tree node and arrive at the desired outcome.
|
|
|
|
[node tree*] J
|
|
------------------------------
|
|
node N [tree*] [K] map C
|
|
|
|
So `J` will have some form like:
|
|
|
|
J == ... [N] ... [K] ... [C] ...
|
|
|
|
Let's dive in. First, unquote the node and `dip` `N`.
|
|
|
|
[node tree*] uncons [N] dip
|
|
node [tree*] [N] dip
|
|
node N [tree*]
|
|
|
|
Next, `map` `K` over the child trees and combine with `C`.
|
|
|
|
node N [tree*] [K] map C
|
|
node N [tree*] [K] map C
|
|
node N [K.tree*] C
|
|
|
|
So:
|
|
|
|
J == uncons [N] dip [K] map C
|
|
|
|
Plug it in and convert to `genrec`:
|
|
|
|
K == [not] [B] [J ] ifte
|
|
== [not] [B] [uncons [N] dip [K] map C] ifte
|
|
== [not] [B] [uncons [N] dip] [map C] genrec
|
|
|
|
## Extract the givens to parameterize the program.
|
|
Working backwards:
|
|
|
|
[not] [B] [uncons [N] dip] [map C] genrec
|
|
[B] [not] swap [uncons [N] dip] [map C] genrec
|
|
[B] [uncons [N] dip] [[not] swap] dip [map C] genrec
|
|
^^^^^^^^^^^^^^^^
|
|
[B] [[N] dip] [uncons] swoncat [[not] swap] dip [map C] genrec
|
|
[B] [N] [dip] cons [uncons] swoncat [[not] swap] dip [map C] genrec
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
Extract a couple of auxiliary definitions:
|
|
|
|
TS.0 == [[not] swap] dip
|
|
TS.1 == [dip] cons [uncons] swoncat
|
|
|
|
[B] [N] TS.1 TS.0 [map C] genrec
|
|
[B] [N] [map C] [TS.1 TS.0] dip genrec
|
|
[B] [N] [C] [map] swoncat [TS.1 TS.0] dip genrec
|
|
|
|
The givens are all to the left so we have our definition.
|
|
|
|
### (alternate) Extract the givens to parameterize the program.
|
|
Working backwards:
|
|
|
|
[not] [B] [uncons [N] dip] [map C] genrec
|
|
[not] [B] [N] [dip] cons [uncons] swoncat [map C] genrec
|
|
[B] [N] [not] roll> [dip] cons [uncons] swoncat [map C] genrec
|
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
## Define `treestep`
|
|
|
|
|
|
```python
|
|
from notebook_preamble import D, J, V, define, DefinitionWrapper
|
|
```
|
|
|
|
|
|
```python
|
|
DefinitionWrapper.add_definitions('''
|
|
|
|
_treestep_0 == [[not] swap] dip
|
|
_treestep_1 == [dip] cons [uncons] swoncat
|
|
treegrind == [_treestep_1 _treestep_0] dip genrec
|
|
treestep == [map] swoncat treegrind
|
|
|
|
''', D)
|
|
```
|
|
|
|
## Examples
|
|
Consider trees, the nodes of which are integers. We can find the sum of all nodes in a tree with this function:
|
|
|
|
sumtree == [pop 0] [] [sum +] treestep
|
|
|
|
|
|
```python
|
|
define('sumtree == [pop 0] [] [sum +] treestep')
|
|
```
|
|
|
|
Running this function on an empty tree value gives zero:
|
|
|
|
[] [pop 0] [] [sum +] treestep
|
|
------------------------------------
|
|
0
|
|
|
|
|
|
```python
|
|
J('[] sumtree') # Empty tree.
|
|
```
|
|
|
|
0
|
|
|
|
|
|
Running it on a non-empty node:
|
|
|
|
[n tree*] [pop 0] [] [sum +] treestep
|
|
n [tree*] [[pop 0] [] [sum +] treestep] map sum +
|
|
n [ ... ] sum +
|
|
n m +
|
|
n+m
|
|
|
|
|
|
|
|
```python
|
|
J('[23] sumtree') # No child trees.
|
|
```
|
|
|
|
23
|
|
|
|
|
|
|
|
```python
|
|
J('[23 []] sumtree') # Child tree, empty.
|
|
```
|
|
|
|
23
|
|
|
|
|
|
|
|
```python
|
|
J('[23 [2 [4]] [3]] sumtree') # Non-empty child trees.
|
|
```
|
|
|
|
32
|
|
|
|
|
|
|
|
```python
|
|
J('[23 [2 [8] [9]] [3] [4 []]] sumtree') # Etc...
|
|
```
|
|
|
|
49
|
|
|
|
|
|
|
|
```python
|
|
J('[23 [2 [8] [9]] [3] [4 []]] [pop 0] [] [cons sum] treestep') # Alternate "spelling".
|
|
```
|
|
|
|
49
|
|
|
|
|
|
|
|
```python
|
|
J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 23] [cons] treestep') # Replace each node.
|
|
```
|
|
|
|
[23 [23 [23] [23]] [23] [23 []]]
|
|
|
|
|
|
|
|
```python
|
|
J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 1] [cons] treestep')
|
|
```
|
|
|
|
[1 [1 [1] [1]] [1] [1 []]]
|
|
|
|
|
|
|
|
```python
|
|
J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 1] [cons] treestep sumtree')
|
|
```
|
|
|
|
6
|
|
|
|
|
|
|
|
```python
|
|
J('[23 [2 [8] [9]] [3] [4 []]] [pop 0] [pop 1] [sum +] treestep') # Combine replace and sum into one function.
|
|
```
|
|
|
|
6
|
|
|
|
|
|
|
|
```python
|
|
J('[4 [3 [] [7]]] [pop 0] [pop 1] [sum +] treestep') # Combine replace and sum into one function.
|
|
```
|
|
|
|
3
|
|
|
|
|
|
## Redefining the Ordered Binary Tree in terms of `treestep`.
|
|
|
|
Tree = [] | [[key value] left right]
|
|
|
|
What kind of functions can we write for this with our `treestep`?
|
|
|
|
The pattern for processing a non-empty node is:
|
|
|
|
node N [tree*] [K] map C
|
|
|
|
Plugging in our BTree structure:
|
|
|
|
[key value] N [left right] [K] map C
|
|
|
|
### Traversal
|
|
[key value] first [left right] [K] map i
|
|
key [value] [left right] [K] map i
|
|
key [left right] [K] map i
|
|
key [lkey rkey ] i
|
|
key lkey rkey
|
|
|
|
This doesn't quite work:
|
|
|
|
|
|
```python
|
|
J('[[3 0] [[2 0] [][]] [[9 0] [[5 0] [[4 0] [][]] [[8 0] [[6 0] [] [[7 0] [][]]][]]][]]] ["B"] [first] [i] treestep')
|
|
```
|
|
|
|
3 'B' 'B'
|
|
|
|
|
|
Doesn't work because `map` extracts the `first` item of whatever its mapped function produces. We have to return a list, rather than depositing our results directly on the stack.
|
|
|
|
|
|
[key value] N [left right] [K] map C
|
|
|
|
[key value] first [left right] [K] map flatten cons
|
|
key [left right] [K] map flatten cons
|
|
key [[lk] [rk] ] flatten cons
|
|
key [ lk rk ] cons
|
|
[key lk rk ]
|
|
|
|
So:
|
|
|
|
[] [first] [flatten cons] treestep
|
|
|
|
|
|
```python
|
|
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [first] [flatten cons] treestep')
|
|
```
|
|
|
|
[3 2 9 5 4 8 6 7]
|
|
|
|
|
|
There we go.
|
|
|
|
### In-order traversal
|
|
|
|
From here:
|
|
|
|
key [[lk] [rk]] C
|
|
key [[lk] [rk]] i
|
|
key [lk] [rk] roll<
|
|
[lk] [rk] key swons concat
|
|
[lk] [key rk] concat
|
|
[lk key rk]
|
|
|
|
So:
|
|
|
|
[] [i roll< swons concat] [first] treestep
|
|
|
|
|
|
```python
|
|
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [uncons pop] [i roll< swons concat] treestep')
|
|
```
|
|
|
|
[2 3 4 5 6 7 8 9]
|
|
|
|
|
|
## With `treegrind`?
|
|
The `treegrind` function doesn't include the `map` combinator, so the `[C]` function must arrange to use some combinator on the quoted recursive copy `[K]`. With this function, the pattern for processing a non-empty node is:
|
|
|
|
node N [tree*] [K] C
|
|
|
|
Plugging in our BTree structure:
|
|
|
|
[key value] N [left right] [K] C
|
|
|
|
|
|
```python
|
|
J('[["key" "value"] ["left"] ["right"] ] ["B"] ["N"] ["C"] treegrind')
|
|
```
|
|
|
|
['key' 'value'] 'N' [['left'] ['right']] [[not] ['B'] [uncons ['N'] dip] ['C'] genrec] 'C'
|
|
|
|
|
|
## `treegrind` with `step`
|
|
|
|
Iteration through the nodes
|
|
|
|
|
|
```python
|
|
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [pop] ["N"] [step] treegrind')
|
|
```
|
|
|
|
[3 0] 'N' [2 0] 'N' [9 0] 'N' [5 0] 'N' [4 0] 'N' [8 0] 'N' [6 0] 'N' [7 0] 'N'
|
|
|
|
|
|
Sum the nodes' keys.
|
|
|
|
|
|
```python
|
|
J('0 [[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [pop] [first +] [step] treegrind')
|
|
```
|
|
|
|
44
|
|
|
|
|
|
Rebuild the tree using `map` (imitating `treestep`.)
|
|
|
|
|
|
```python
|
|
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [[100 +] infra] [map cons] treegrind')
|
|
```
|
|
|
|
[[103 0] [[102 0] [] []] [[109 0] [[105 0] [[104 0] [] []] [[108 0] [[106 0] [] [[107 0] [] []]] []]] []]]
|
|
|
|
|
|
## Do we have the flexibility to reimplement `Tree-get`?
|
|
I think we do:
|
|
|
|
[B] [N] [C] treegrind
|
|
|
|
We'll start by saying that the base-case (the key is not in the tree) is user defined, and the per-node function is just the query key literal:
|
|
|
|
[B] [query_key] [C] treegrind
|
|
|
|
This means we just have to define `C` from:
|
|
|
|
[key value] query_key [left right] [K] C
|
|
|
|
|
|
Let's try `cmp`:
|
|
|
|
C == P [T>] [E] [T<] cmp
|
|
|
|
[key value] query_key [left right] [K] P [T>] [E] [T<] cmp
|
|
|
|
### The predicate `P`
|
|
Seems pretty easy (we must preserve the value in case the keys are equal):
|
|
|
|
[key value] query_key [left right] [K] P
|
|
[key value] query_key [left right] [K] roll<
|
|
[key value] [left right] [K] query_key [roll< uncons swap] dip
|
|
|
|
[key value] [left right] [K] roll< uncons swap query_key
|
|
[left right] [K] [key value] uncons swap query_key
|
|
[left right] [K] key [value] swap query_key
|
|
[left right] [K] [value] key query_key
|
|
|
|
P == roll< [roll< uncons swap] dip
|
|
|
|
(Possibly with a swap at the end? Or just swap `T<` and `T>`.)
|
|
|
|
So now:
|
|
|
|
[left right] [K] [value] key query_key [T>] [E] [T<] cmp
|
|
|
|
Becomes one of these three:
|
|
|
|
[left right] [K] [value] T>
|
|
[left right] [K] [value] E
|
|
[left right] [K] [value] T<
|
|
|
|
|
|
### `E`
|
|
Easy.
|
|
|
|
E == roll> popop first
|
|
|
|
### `T<` and `T>`
|
|
|
|
T< == pop [first] dip i
|
|
T> == pop [second] dip i
|
|
|
|
## Putting it together
|
|
|
|
|
|
T> == pop [first] dip i
|
|
T< == pop [second] dip i
|
|
E == roll> popop first
|
|
P == roll< [roll< uncons swap] dip
|
|
|
|
Tree-get == [P [T>] [E] [T<] cmp] treegrind
|
|
|
|
To me, that seems simpler than the `genrec` version.
|
|
|
|
|
|
```python
|
|
DefinitionWrapper.add_definitions('''
|
|
|
|
T> == pop [first] dip i
|
|
T< == pop [second] dip i
|
|
E == roll> popop first
|
|
P == roll< [roll< uncons swap] dip
|
|
|
|
Tree-get == [P [T>] [E] [T<] cmp] treegrind
|
|
|
|
''', D)
|
|
```
|
|
|
|
|
|
```python
|
|
J('''\
|
|
|
|
[[3 13] [[2 12] [] []] [[9 19] [[5 15] [[4 14] [] []] [[8 18] [[6 16] [] [[7 17] [] []]] []]] []]]
|
|
|
|
[] [5] Tree-get
|
|
|
|
''')
|
|
```
|
|
|
|
15
|
|
|
|
|
|
|
|
```python
|
|
J('''\
|
|
|
|
[[3 13] [[2 12] [] []] [[9 19] [[5 15] [[4 14] [] []] [[8 18] [[6 16] [] [[7 17] [] []]] []]] []]]
|
|
|
|
[pop "nope"] [25] Tree-get
|
|
|
|
''')
|
|
```
|
|
|
|
'nope'
|
|
|