Thun/docs/reference/mkref/Functor-Reference.md

5028 lines
62 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Version -10.0.0
Each function, combinator, or definition should be documented here.
--------------
## &
See [and](#and).
------------------------------------------------------------------------
## &&
Combinator
Short-circuiting Boolean AND
Accept two quoted programs, run the first and expect a Boolean value, if
it's `true` pop it and run the second program (which should also return a
Boolean value) otherwise pop the second program (leaving `false` on the
stack.)
[A] [B] &&
---------------- true
B
[A] [B] &&
---------------- false
false
### Definition
nulco [nullary [false]] dip branch
### Derivation
TODO: this is derived in one of the notebooks I think, look it up and
link to it, or copy the content here.
### Discussion
This is seldom useful, I suspect, but this way you have it.
### Crosslinks
[||](#section-25)
--------------
## *
See [mul](#mul).
--------------
## •
See [id](#id).
--------------
## ^
See [xor](#xor).
--------------
## =
See [eq](#eq).
--------------
## !=
See [ne](#ne).
------------------------------------------------------------------------
## !-
Function
Not negative.
n !-
----------- n < 0
false
n !-
---------- n >= 0
true
### Definition
0 \>=
### Discussion
Return a Boolean value indicating if a number is greater than or equal to
zero.
--------------
## >
See [gt](#gt).
--------------
## >=
See [ge](#ge).
--------------
## >>
See [rshift](#rshift).
--------------
## -
See [sub](#sub).
--------------
## --
See [pred](#pred).
--------------
## <
See [lt](#lt).
--------------
## <=
See [le](#le).
--------------
## <>
See [ne](#ne).
------------------------------------------------------------------------
## \<\{\}
Function
... a <{}
----------------
... [] a
### Definition
[] swap
### Discussion
Tuck an empty list just under the first item on the stack.
### Crosslinks
[<<{}](#section-18)
--------------
## <<
See [lshift](#lshift).
------------------------------------------------------------------------
## \<\<\{\}
Function
... b a <{}
-----------------
... [] b a
### Definition
[] rollup
### Discussion
Tuck an empty list just under the first two items on the stack.
### Crosslinks
[<{}](#section-16)
--------------
## %
See [mod](#mod).
--------------
## +
See [add](#add).
--------------
## ++
See [succ](#succ).
------------------------------------------------------------------------
## ?
Function
Is the item on the top of the stack "truthy"?
### Definition
> [dup](#dup) [bool](#bool)
### Discussion
You often want to test the truth value of an item on the stack without
consuming the item.
### Crosslinks
[bool](#bool)
--------------
## /
See [floordiv](#floordiv).
--------------
## //
See [floordiv](#floordiv).
--------------
## /floor
See [floordiv](#floordiv).
------------------------------------------------------------------------
## \|\|
Combinator
Short-circuiting Boolean OR
### Definition
> [nulco](#nulco) \[[nullary](#nullary)\] [dip](#dip) \[true\] [branch](#branch)
### Discussion
Accept two quoted programs, run the first and expect a Boolean value, if
its `false` pop it and run the second program (which should also return a
Boolean value) otherwise pop the second program (leaving `true` on the
stack.)
[A] [B] ||
---------------- A -> false
B
[A] [B] ||
---------------- A -> true
true
### Crosslinks
[&&](#section-1)
------------------------------------------------------------------------
## abs
Function
Return the absolute value of the argument.
### Definition
> [dup](#dup) 0 < [] \[[neg](#neg)\] [branch](#branch)
------------------------------------------------------------------------
## add
Basis Function
Add two numbers together: a + b.
------------------------------------------------------------------------
## anamorphism
Combinator
Build a list of values from a generator program `G` and a stopping
predicate `P`.
[P] [G] anamorphism
-----------------------------------------
[P] [pop []] [G] [dip swons] genrec
### Definition
> \[[pop](#pop) \[\]\] [swap](#swap) \[[dip](#dip) [swons](#swons)\] [genrec](#genrec)
### Example
The `range` function generates a list of the integers from 0 to n - 1:
> \[0 <=\] \[\-\- dup\] anamorphism
### Discussion
See the [Recursion Combinators notebook](https://joypy.osdn.io/notebooks/Recursion_Combinators.html).
------------------------------------------------------------------------
## and
Basis Function
Logical bit-wise AND.
### Crosslinks
[or](#or)
[xor](#xor)
--------------------
## app1
"apply one"
Combinator
Given a quoted program on TOS and anything as the second stack item run
the program without disturbing the stack and replace the two args with
the first result of the program.
... x [Q] app1
---------------------------------
... [x ...] [Q] infra first
This is the same effect as the [unary](#unary) combinator.
### Definition
> [nullary](#nullary) [popd](#popd)
### Discussion
Just a specialization of `nullary` really. Its parallelizable cousins
are more useful.
### Crosslinks
[app2](#app2)
[app3](#app3)
[appN](#appN)
[unary](#unary)
------------------------------------------------------------------------
## app2
Combinator
Like [app1](#app1) with two items.
... y x [Q] . app2
-----------------------------------
... [y ...] [Q] . infra first
[x ...] [Q] infra first
### Definition
> \[[grba] [swap] [grba] [swap]\] [dip] \[[infrst]\] [cons] [ii]
### Discussion
Unlike [app1](#app1), which is essentially an alias for [unary](#unary),
this function is not the same as [binary](#binary). Instead of running
one program using exactly two items from the stack and pushing one
result (as [binary](#binary) does) this function takes two items from the
stack and runs the program twice, separately for each of the items, then
puts both results onto the stack.
This is not currently implemented as parallel processes but it can (and
should) be done.
### Crosslinks
[app1](#app1)
[app3](#app3)
[appN](#appN)
[unary](#unary)
------------------------------------------------------------------------
## app3
Combinator
Like [app1] with three items.
... z y x [Q] . app3
-----------------------------------
... [z ...] [Q] . infra first
[y ...] [Q] infra first
[x ...] [Q] infra first
### Definition
> 3 [appN]
### Discussion
See [app2].
### Crosslinks
[app1](#app1)
[app2](#app2)
[appN](#appN)
[unary](#unary)
------------------------------------------------------------------------
## appN
Combinator
Like [app1] with any number of items.
... xN ... x2 x1 x0 [Q] n . appN
--------------------------------------
... [xN ...] [Q] . infra first
...
[x2 ...] [Q] infra first
[x1 ...] [Q] infra first
[x0 ...] [Q] infra first
### Definition
> \[[grabN]\] [codi] [map] [disenstacken]
### Discussion
This function takes a quoted function `Q` and an integer and runs the
function that many times on that many stack items. See also [app2].
### Crosslinks
[app1](#app1)
[app2](#app2)
[app3](#app3)
[unary](#unary)
--------------
## at
See [getitem](#getitem).
------------------------------------------------------------------------
## average
Function
Compute the average of a list of numbers.
(Currently broken until I can figure out what to do about "numeric tower"
in Thun.)
### Definition
> \[[sum]\] \[[size]\] [cleave] [/]
### Discussion
Theoretically this function would compute the sum and the size in two
separate threads, then divide. This works but a compiled version would
probably do better to sum and count the list once, in one thread, eh?
As an exercise in Functional Programming in Joy it would be fun to
convert this into a catamorphism.
See the [Recursion Combinators notebook](https://joypy.osdn.io/notebooks/Recursion_Combinators.html).
--------------------
## b
Combinator
Run two quoted programs
[P] [Q] b
---------------
P Q
### Definition
> \[[i]\] [dip] [i]
### Discussion
This combinator may seem trivial but it comes in handy.
### Crosslinks
[dupdip](#dupdip)
[ii](#ii)
--------------------
## binary
Combinator
Run a quoted program using exactly two stack values and leave the first
item of the result on the stack.
... y x [P] binary
-----------------------
... a
### Definition
> [unary] [popd]
### Discussion
Runs any other quoted function and returns its first result while
consuming exactly two items from the stack.
### Crosslinks
[nullary](#nullary)
[ternary](#ternary)
[unary](#unary)
------------------------------------------------------------------------
## bool
Basis Function
Convert the item on the top of the stack to a Boolean value.
### Discussion
For integers 0 is `false` and any other number is `true`; for lists the
empty list is `false` and all other lists are `true`.
### Crosslinks
[not]
------------------------------------------------------------------------
## branch
Basis Combinator
Use a Boolean value to select and run one of two quoted programs.
false [F] [T] branch
--------------------------
F
true [F] [T] branch
-------------------------
T
### Definition
> [rolldown] [choice] [i]
### Discussion
This is one of the fundamental operations (although it can be defined in
terms of [choice] as above). The more common "if..then..else" construct
[ifte] adds a predicate function that is evaluated [nullary].
### Crosslinks
[choice]
[ifte]
[select]
------------------------------------------------------------------------
## ccccons
Function
a b c d [...] ccccons
---------------------------
[a b c d ...]
Do [cons] four times.
### Definition
> [ccons] [ccons]
### Crosslinks
[ccons] [cons] [times]
--------------------
## ccons
Function
a b [...] ccons
---------------------
[a b ...]
Do [cons] two times.
### Definition
> [cons] [cons]
### Crosslinks
[cons]
[ccons]
------------------------------------------------------------------------
## choice
Basis Function
Use a Boolean value to select one of two items.
a b false choice
----------------------
a
a b true choice
---------------------
b
### Definition
> \[[pop]\] \[[popd]\] [branch]
### Discussion
It's a matter of taste whether you implement this in terms of [branch] or
the other way around.
### Crosslinks
[branch]
[select]
------------------------------------------------------------------------
## clear
Basis Function
Clear everything from the stack.
### Definition
> [stack] [bool] \[[pop] [stack] [bool]\] [loop]
### Crosslinks
[stack]
[swaack]
------------------------------------------------------------------------
## cleave
Combinator
Run two programs in parallel, consuming one additional item, and put their
results on the stack.
... x [A] [B] cleave
------------------------
... a b
### Derivation
> [fork] [popdd]
### Example
1 2 3 [+] [-] cleave
--------------------------
1 2 5 -1
### Discussion
One of a handful of useful parallel combinators.
### Crosslinks
[clop]
[fork]
[map]
------------------------------------------------------------------------
## clop
Combinator
Run two programs in parallel, consuming two additional items, and put their results on the stack.
... x y [A] [B] clop
--------------------------
... a b
### Definition
> [cleave] [popdd]
### Discussion
Like [cleave] but consumes an additional item from the stack.
1 2 3 4 [+] [-] clop
--------------------------
1 2 7 -1
### Crosslinks
[cleave]
[fork]
[map]
------------------------------------------------------------------------
## cmp
Combinator
Take two values and three quoted programs on the stack and run one
of the three depending on the results of comparing the two values.
a b [G] [E] [L] cmp
------------------------- a > b
G
a b [G] [E] [L] cmp
------------------------- a = b
E
a b [G] [E] [L] cmp
------------------------- a < b
L
### Discussion
This is useful sometimes, and you can [dup] or [dupd] with two quoted
programs to handle the cases when you just want to deal with [<=] or [>=]
and not all three possibilities, e.g.:
[G] [EL] dup cmp
[GE] [L] dupd cmp
Or even:
[GL] [E] over cmp
### Crosslinks
TODO: link to tree notebooks where this was used.
------------------------------------------------------------------------
## codi
Combinator
Take a quoted program from the stack, [cons] the next item onto it, then
[dip] the whole thing under what was the third item on the stack.
a b [F] . codi
--------------------
b . F a
### Definition
> [cons] [dip]
### Discussion
This is one of those weirdly specific functions that turns out to be
useful in a few places.
### Crosslinks
[appN]
[codireco]
------------------------------------------------------------------------
## codireco
Combinator
This is part of the [make_generator] function. You would not use this
combinator directly.
### Definition
> [codi] [reco]
### Discussion
See [make_generator] and the
["Using `x` to Generate Values" notebook](https://joypy.osdn.io/notebooks/Generator_Programs.html#an-interesting-variation)
as well as
[Recursion Theory and Joy](https://www.kevinalbrecht.com/code/joy-mirror/j05cmp.html) by Manfred von Thun.
### Crosslinks
[make_generator]
------------------------------------------------------------------------
## concat
Function
Concatinate two lists.
[a b c] [d e f] concat
----------------------------
[a b c d e f]
### Crosslinks
[first]
[first_two]
[flatten]
[fourth]
[getitem]
[remove]
[rest]
[reverse]
[rrest]
[second]
[shift]
[shunt]
[size]
[sort]
[split_at]
[split_list]
[swaack]
[third]
[zip]
------------------------------------------------------------------------
## cond
Combinator
This combinator works like a case statement. It expects a single quote
on the stack that must contain zero or more condition quotes and a
default quote. Each condition quote should contain a quoted predicate
followed by the function expression to run if that predicate returns
`true`. If no predicates return `true` the default function runs.
[
[ [Predicate0] Function0 ]
[ [Predicate1] Function1 ]
...
[ [PredicateN] FunctionN ]
[Default]
]
cond
### Discussion
It works by rewriting into a chain of nested [ifte]{.title-ref}
expressions, e.g.:
[[[B0] T0] [[B1] T1] [D]] cond
-----------------------------------------
[B0] [T0] [[B1] [T1] [D] ifte] ifte
### Crosslinks
[ifte]
--------------------
## cons
Basis Function
Given an item and a list, append the item to the list to make a new list.
a [...] cons
------------------
[a ...]
### Discussion
Cons is a [venerable old function from Lisp](https://en.wikipedia.org/wiki/Cons#Lists).
Its inverse operation is [uncons].
### Crosslinks
[uncons]
------------------------------------------------------------------------
## dinfrirst
Combinator
Specialist function (that means I forgot what it does and why.)
### Definition
> [dip] [infrst]
------------------------------------------------------------------------
## dip
Basis Combinator
The `dip` combinator expects a quoted program on the stack and below it
some item, it hoists the item into the expression and runs the program
on the rest of the stack.
... x [Q] . dip
---------------------
... . Q x
### Discussion
This along with [infra] are enough to update any datastructure.
See the ["Traversing Datastructures with Zippers" notebook](https://joypy.osdn.io/notebooks/Zipper.html).
Note that the item that was on the top of the stack (`x` in the example above)
will not be treated specially by the interpreter when it is reached
again. This is something of a footgun. My advice is to avoid putting
bare unquoted symbols onto the stack, but then you can't use symbols as
"atoms" and also use `dip` and `infra` to operate on compound
datastructures with atoms in them. This is a kind of side-effect of the
Continuation-Passing Style. The `dip` combinator could "set aside" the
item and replace it after running `Q` but that means that there is an
"extra space" where the item resides while `Q` runs. One of the nice
things about CPS is that the whole state is recorded in the stack and
pending expression (not counting modifications to the dictionary.)
### Crosslinks
[dipd]
[dipdd]
[dupdip]
[dupdipd]
[infra]
------------------------------------------------------------------------
## dipd
Combinator
Like [dip] but expects two items.
... y x [Q] . dipd
-------------------------
... . Q y x
### Discussion
See [dip].
### Crosslinks
[dip]
[dipdd]
[dupdip]
[dupdipd]
[infra]
------------------------------------------------------------------------
## dipdd
Combinator
Like [dip] but expects three items. :
... z y x [Q] . dip
-----------------------------
... . Q z y x
### Discussion
See [dip].
### Crosslinks
[dip]
[dipd]
[dupdip]
[dupdipd]
[infra]
------------------------------------------------------------------------
## disenstacken
Function
The `disenstacken` function expects a list on top of the stack and makes
that the stack discarding the rest of the stack.
1 2 3 [4 5 6] disenstacken
--------------------------------
6 5 4
### Definition
> \[[clear]\] [dip] [reverse] [unstack](#unstack)
### Discussion
Note that the order of the list is not changed, it just looks that way
because the stack is printed with the top on the right while lists are
printed with the top or head on the left.
### Crosslinks
[enstacken]
[stack]
[unstack](#unstack)
--------------
## div
See [floordiv](#floordiv).
------------------------------------------------------------------------
## divmod
Function
x y divmod
------------------
q r
(x/y) (x%y)
Invariant: `qy + r = x`.
### Definition
> \[[floordiv]\] \[[mod]\] [clop]
------------------------------------------------------------------------
## down_to_zero
Function
Given a number greater than zero put all the Natural numbers (including
zero) less than that onto the stack.
### Example
3 down_to_zero
--------------------
3 2 1 0
### Definition
> \[0 \>\] \[[dup] [--]\] [while]
### Crosslinks
[range]
------------------------------------------------------------------------
## drop
Function
Expects an integer and a quote on the stack and returns the quote with n
items removed off the top.
### Example
[a b c d] 2 drop
----------------------
[c d]
### Definition
> \[[rest]\] [times]
### Crosslinks
[take]
------------------------------------------------------------------------
## dup
Basis Function
"Dup"licate the top item on the stack.
a dup
-----------
a a
### Crosslinks
[dupd]
[dupdd]
[dupdip]
[dupdipd]
------------------------------------------------------------------------
## dupd
Function
[dup] the second item down on the stack.
a b dupd
--------------
a a b
### Definition
> \[[dup]\] [dip]
### Crosslinks
[dup]
[dupdd]
[dupdip]
[dupdipd]
------------------------------------------------------------------------
## dupdd
Function
[dup] the third item down on the stack.
a b c dupdd
-----------------
a a b c
### Definition
> \[[dup]\] [dipd]
### Crosslinks
[dup]
[dupd]
[dupdip]
[dupdipd]
------------------------------------------------------------------------
## dupdip
Combinator
Apply a function `F` and [dup] the item under it on the stack.
a [F] dupdip
------------------
a F a
### Definition
> [dupd] [dip]
### Derivation
a [F] dupdip
a [F] dupd dip
a [F] [dup] dip dip
a dup [F] dip
a a [F] dip
a F a
### Discussion
A very common and useful combinator.
### Crosslinks
[dupdipd]
------------------------------------------------------------------------
## dupdipd
Combinator
Run a copy of program `F` under the next item down on the stack.
a [F] dupdipd
-------------------
F a [F]
### Definition
> [dup] [dipd]
### Crosslinks
[dupdip]
------------------------------------------------------------------------
## enstacken
Function
Put the stack onto the stack replacing the contents of the stack.
... a b c enstacken
-------------------------
[c b a ...]
### Definition
> [stack] \[[clear]\] [dip]
### Discussion
This is a destructive version of [stack]. See the note under
[disenstacken] about the apparent but illusory reversal of the stack.
### Crosslinks
[stack]
[unstack]
[disenstacken]
------------------------------------------------------------------------
## eq
Basis Function
Compare the two items on the top of the stack for equality and replace
them with a Boolean value.
a b eq
-------------
Boolean
### Discussion
Lorem ipsum.
### Crosslinks
[cmp]
[ge]
[gt]
[le]
[lt]
[ne]
------------------------------------------------------------------------
## first
Basis Function Combinator
([a1 ...1] -- a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## first_two
Basis Function Combinator
([a1 a2 ...1] -- a1 a2)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## flatten
Basis Function Combinator
\<{} \[concat\] step
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## floor
Basis Function Combinator
Return the floor of x as an Integral.
This is the largest integer \<= x.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## floordiv
Basis Function Combinator
Same as a // b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## fork
Basis Function Combinator
\[i\] app2
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## fourth
Basis Function Combinator
([a1 a2 a3 a4 ...1] -- a4)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## gcd
Basis Function Combinator
true \[tuck mod dup 0 \>\] loop pop
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## gcd2
Basis Function Combinator
Compiled GCD function.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## ge
Basis Function Combinator
Same as a \>= b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## genrec
Basis Function Combinator
General Recursion Combinator. :
[if] [then] [rec1] [rec2] genrec
---------------------------------------------------------------------
[if] [then] [rec1 [[if] [then] [rec1] [rec2] genrec] rec2] ifte
From \"Recursion Theory and Joy\" (j05cmp.html) by Manfred von Thun:
\"The genrec combinator takes four program parameters in addition to
whatever data parameters it needs. Fourth from the top is an if-part,
followed by a then-part. If the if-part yields true, then the then-part
is executed and the combinator terminates. The other two parameters are
the rec1-part and the rec2-part. If the if-part yields false, the
rec1-part is executed. Following that the four program parameters and
the combinator are again pushed onto the stack bundled up in a quoted
form. Then the rec2-part is executed, where it will find the bundled
form. Typically it will then execute the bundled form, either with i or
with app2, or some other combinator.\"
The way to design one of these is to fix your base case \[then\] and the
test \[if\], and then treat rec1 and rec2 as an else-part
\"sandwiching\" a quotation of the whole function.
For example, given a (general recursive) function \'F\': :
F == [I] [T] [R1] [R2] genrec
If the \[I\] if-part fails you must derive R1 and R2 from: :
... R1 [F] R2
Just set the stack arguments in front, and figure out what R1 and R2
have to do to apply the quoted \[F\] in the proper way. In effect, the
genrec combinator turns into an ifte combinator with a quoted copy of
the original definition in the else-part: :
F == [I] [T] [R1] [R2] genrec
== [I] [T] [R1 [F] R2] ifte
Primitive recursive functions are those where R2 == i. :
P == [I] [T] [R] tailrec
== [I] [T] [R [P] i] ifte
== [I] [T] [R P] ifte
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## getitem
Basis Function Combinator
getitem == drop first
Expects an integer and a quote on the stack and returns the item at the
nth position in the quote counting from 0. :
[a b c d] 0 getitem
-------------------------
a
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## grabN
Basis Function Combinator
\<{} \[cons\] times
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## grba
Basis Function Combinator
\[stack popd\] dip
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## gt
Basis Function Combinator
Same as a \> b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## help
Basis Function Combinator
Accepts a quoted symbol on the top of the stack and prints its docs.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## hypot
Basis Function Combinator
\[sqr\] ii + sqrt
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------------
## i
(Basis Combinator)
Append a quoted expression onto the pending expression.
[Q] i
-----------
Q
### Source
combo(i, [list(P)|S], S, Ei, Eo) :- append(P, Ei, Eo).
### Discussion
This is probably the fundamental combinator. You wind up using it in all
kinds of places (for example, the `x` combinator can be defined as `dup i`.)
------------------------------------------------------------------------
## id
Basis Function Combinator
The identity function.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## ifte
Basis Function Combinator
If-Then-Else Combinator :
... [if] [then] [else] ifte
---------------------------------------------------
... [[else] [then]] [...] [if] infra select i
... [if] [then] [else] ifte
-------------------------------------------------------
... [else] [then] [...] [if] infra first choice i
Has the effect of grabbing a copy of the stack on which to run the
if-part using infra.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## ii
Basis Function Combinator
... a [Q] ii
------------------
... Q a Q
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------------
## infra
(Combinator)
Accept a quoted program and a list on the stack and run the program with
the list as its stack. Does not affect the stack (below the list.)
... [a b c] [Q] infra
---------------------------
c b a Q [...] swaack
### Definition
swons swaack [i] dip swaack
### Discussion
This is one of the more useful combinators. It allows a quoted
expression to serve as a stack for a program, effectively running it in a
kind of "pocket universe". If the list represents a datastructure then
`infra` lets you work on its internal structure.
### Crosslinks
[swaack](#swaack)
------------------------------------------------------------------------
## infrst
Basis Function Combinator
infra first
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## inscribe
Basis Function Combinator
Create a new Joy function definition in the Joy dictionary. A definition
is given as a quote with a name followed by a Joy expression. for
example:
> \[sqr dup mul\] inscribe
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## le
Basis Function Combinator
Same as a \<= b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## loop
Basis Function Combinator
Basic loop combinator. :
... True [Q] loop
-----------------------
... Q [Q] loop
... False [Q] loop
------------------------
...
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## lshift
Basis Function Combinator
Same as a \<\< b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## lt
Basis Function Combinator
Same as a \< b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## make_generator
Basis Function Combinator
\[codireco\] ccons
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## map
Basis Function Combinator
Run the quoted program on TOS on the items in the list under it, push a
new list with the results in place of the program and original list.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## max
Basis Function Combinator
Given a list find the maximum.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## min
Basis Function Combinator
Given a list find the minimum.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## mod
Basis Function Combinator
Same as a % b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------
## modulus
See [mod](#mod).
------------------------------------------------------------------------
## mul
Basis Function Combinator
Same as a \* b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## ne
Basis Function Combinator
Same as a != b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## neg
Basis Function Combinator
Same as -a.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## not
Basis Function Combinator
Same as not a.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------------
## !-
"not negative"
(Function, Boolean Predicate)
Integer on top of stack is replaced by Boolean value indicating whether
it is non-negative.
N !-
----------- N < 0
false
N !-
---------- N >= 0
true
### Definition
0 >=
------------------------------------------------------------------------
## nulco
Basis Function Combinator
\[nullary\] cons
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------------
## nullary
(Combinator)
Run a quoted program without using any stack values and leave the first item of the result on the stack.
... [P] nullary
---------------------
... A
### Definition
[stack] dip infra first
### Derivation
... [P] nullary
... [P] [stack] dip infra first
... stack [P] infra first
... [...] [P] infra first
... [A ...] first
... A
### Discussion
A very useful function that runs any other quoted function and returns
it's first result without disturbing the stack (under the quoted
program.)
### Crosslinks
[unary](#unary)
[binary](#binary)
[ternary](#ternary)
------------------------------------------------------------------------
## of
Basis Function Combinator
swap at
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## or
Basis Function Combinator
Same as a \| b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## over
Basis Function Combinator
(a2 a1 -- a2 a1 a2)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## pam
Basis Function Combinator
\[i\] map
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------
## pick
See [getitem](#getitem).
------------------------------------------------------------------------
## pm
Basis Function Combinator
Plus or minus :
a b pm
-------------
a+b a-b
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## pop
Basis Function Combinator
(a1 --)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## popd
Basis Function Combinator
(a2 a1 -- a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## popdd
Basis Function Combinator
(a3 a2 a1 -- a2 a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## popop
Basis Function Combinator
(a2 a1 --)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## popopd
Basis Function Combinator
(a3 a2 a1 -- a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## popopdd
Basis Function Combinator
(a4 a3 a2 a1 -- a2 a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## popopop
Basis Function Combinator
pop popop
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## pow
Basis Function Combinator
Same as a \*\* b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## pred
Basis Function Combinator
Decrement TOS.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## primrec
Basis Function Combinator
From the \"Overview of the language JOY\":
\> The primrec combinator expects two quoted programs in addition to a
data parameter. For an integer data parameter it works like this: If the
data parameter is zero, then the first quotation has to produce the
value to be returned. If the data parameter is positive then the second
has to combine the data parameter with the result of applying the
function to its predecessor.:
5 [1] [*] primrec
\> Then primrec tests whether the top element on the stack (initially
the 5) is equal to zero. If it is, it pops it off and executes one of
the quotations, the \[1\] which leaves 1 on the stack as the result.
Otherwise it pushes a decremented copy of the top element and recurses.
On the way back from the recursion it uses the other quotation, \[\*\],
to multiply what is now a factorial on top of the stack by the second
element on the stack.:
n [Base] [Recur] primrec
0 [Base] [Recur] primrec
------------------------------
Base
n [Base] [Recur] primrec
------------------------------------------ n > 0
n (n-1) [Base] [Recur] primrec Recur
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## product
Basis Function Combinator
1 swap \[\*\] step
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## quoted
Basis Function Combinator
\[unit\] dip
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## range
Basis Function Combinator
\[0 \<=\] \[1 - dup\] anamorphism
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## range_to_zero
Basis Function Combinator
unit \[down_to_zero\] infra
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## reco
Basis Function Combinator
rest cons
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------
## rem
See [mod](#mod).
--------------
## remainder
See [mod](#mod).
------------------------------------------------------------------------
## remove
Basis Function Combinator
Expects an item on the stack and a quote under it and removes that item
from the the quote. The item is only removed once. If the list is empty
or the item isn\'t in the list then the list is unchanged. :
[1 2 3 1] 1 remove
------------------------
[2 3 1]
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## rest
Basis Function Combinator
([a1 ...0] -- [...0])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## reverse
Basis Function Combinator
Reverse the list on the top of the stack. :
reverse == [] swap shunt
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## rolldown
Basis Function Combinator
(a1 a2 a3 -- a2 a3 a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## rollup
Basis Function Combinator
(a1 a2 a3 -- a3 a1 a2)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------
## roll>
See [rollup](#rollup).
--------------
## roll<
See [rolldown](#rolldown).
------------------------------------------------------------------------
## round
Basis Function Combinator
Round a number to a given precision in decimal digits.
The return value is an integer if ndigits is omitted or None. Otherwise
the return value has the same type as the number. ndigits may be
negative.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## rrest
Basis Function Combinator
([a1 a2 ...1] -- [...1])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## rshift
Basis Function Combinator
Same as a \>\> b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## run
Basis Function Combinator
\<{} infra
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## second
Basis Function Combinator
([a1 a2 ...1] -- a2)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## select
Basis Function Combinator
Use a Boolean value to select one of two items from a sequence. :
[A B] false select
------------------------
A
[A B] true select
-----------------------
B
The sequence can contain more than two items but not fewer. Currently
Python semantics are used to evaluate the \"truthiness\" of the Boolean
value (so empty string, zero, etc. are counted as false, etc.)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## sharing
Basis Function Combinator
Print redistribution information.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## shift
Basis Function Combinator
uncons \[swons\] dip
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## shunt
Basis Function Combinator
Like concat but reverses the top list into the second. :
shunt == [swons] step == reverse swap concat
[a b c] [d e f] shunt
---------------------------
[f e d a b c]
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## size
Basis Function Combinator
\[pop ++\] step_zero
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## sort
Basis Function Combinator
Given a list return it sorted.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## spiral_next
Basis Function Combinator
\[\[\[abs\] ii \<=\] \[\[\<\>\] \[pop !-\] \|\|\] &&\] \[\[!-\]
\[\[++\]\] \[\[\--\]\] ifte dip\] \[\[pop !-\] \[\--\] \[++\] ifte\]
ifte
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## split_at
Basis Function Combinator
\[drop\] \[take\] clop
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## split_list
Basis Function Combinator
\[take reverse\] \[drop\] clop
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## sqr
Basis Function Combinator
dup \*
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## sqrt
Basis Function Combinator
Return the square root of the number a. Negative numbers return complex
roots.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## stack
Basis Function Combinator
(... -- ... [...])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## stackd
Basis Function Combinator
\[stack\] dip
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## step
Basis Function Combinator
Run a quoted program on each item in a sequence. :
... [] [Q] . step
-----------------------
... .
... [a] [Q] . step
------------------------
... a . Q
... [a b c] [Q] . step
----------------------------------------
... a . Q [b c] [Q] step
The step combinator executes the quotation on each member of the list on
top of the stack.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## step_zero
Basis Function Combinator
0 roll> step
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## stuncons
Basis Function Combinator
(... a1 -- ... a1 a1 [...])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## stununcons
Basis Function Combinator
(... a2 a1 -- ... a2 a1 a1 a2 [...])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## sub
Basis Function Combinator
Same as a - b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## succ
Basis Function Combinator
Increment TOS.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## sum
Basis Function Combinator
Given a quoted sequence of numbers return the sum. :
sum == 0 swap [+] step
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## swaack
Basis Function Combinator
([...1] -- [...0])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## swap
Basis Function Combinator
(a1 a2 -- a2 a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## swapd
Basis Function Combinator
\[swap\] dip
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## swoncat
Basis Function Combinator
swap concat
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## swons
Basis Function Combinator
([...1] a1 -- [a1 ...1])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## tailrec
Basis Function Combinator
\[i\] genrec
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## take
Basis Function Combinator
Expects an integer and a quote on the stack and returns the quote with
just the top n items in reverse order (because that\'s easier and you
can use reverse if needed.) :
[a b c d] 2 take
----------------------
[b a]
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------------
## ternary
(Combinator)
Run a quoted program using exactly three stack values and leave the first
item of the result on the stack.
... z y x [P] unary
-------------------------
... A
### Definition
binary popd
### Discussion
Runs any other quoted function and returns its first result while
consuming exactly three items from the stack.
### Crosslinks
[binary](#binary)
[nullary](#nullary)
[unary](#unary)
------------------------------------------------------------------------
## third
Basis Function Combinator
([a1 a2 a3 ...1] -- a3)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## times
Basis Function Combinator
times == \[\-- dip\] cons \[swap\] infra \[0 \>\] swap while pop :
... n [Q] . times
--------------------- w/ n <= 0
... .
... 1 [Q] . times
-----------------------
... . Q
... n [Q] . times
------------------------------------- w/ n > 1
... . Q (n - 1) [Q] times
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------
## truthy
See [bool](#bool).
------------------------------------------------------------------------
## tuck
Basis Function Combinator
(a2 a1 -- a1 a2 a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------------
## unary
(Combinator)
Run a quoted program using exactly one stack value and leave the first item of the result on the stack.
... x [P] unary
---------------------
... A
### Definition
nullary popd
### Discussion
Runs any other quoted function and returns its first result while
consuming exactly one item from the stack.
### Crosslinks
[binary](#binary)
[nullary](#nullary)
[ternary](#ternary)
--------------------
## uncons
(Basis Function)
Removes an item from a list and leaves it on the stack under the rest of
the list. You cannot `uncons` an item from an empty list.
[A ...] uncons
--------------------
A [...]
### Source
func(uncons, Si, So) :- func(cons, So, Si).
### Discussion
This is the inverse of `cons`.
### Crosslinks
[cons](#cons)
------------------------------------------------------------------------
## unique
Basis Function Combinator
Given a list remove duplicate items.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## unit
Basis Function Combinator
(a1 -- [a1 ])
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## unquoted
Basis Function Combinator
\[i\] dip
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## unswons
Basis Function Combinator
([a1 ...1] -- [...1] a1)
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## void
Basis Function Combinator
True if the form on TOS is void otherwise False.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## warranty
Basis Function Combinator
Print warranty information.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## while
Basis Function Combinator
swap nulco dupdipd concat loop
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## words
Basis Function Combinator
Print all the words in alphabetical order.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
--------------------
## x
(Combinator)
[F] x
-----------
[F] F
### Definition
dup i
### Discussion
The `x` combinator ...
------------------------------------------------------------------------
## xor
Basis Function Combinator
Same as a \^ b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------
## zip
Basis Function Combinator
Replace the two lists on the top of the stack with a list of the pairs
from each list. The smallest list sets the length of the result list.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.