And the rest.

Whew!  Glad that's done.
This commit is contained in:
Simon Forman 2022-03-29 15:11:19 -07:00
parent a722f90072
commit 60d18fd389
9 changed files with 119 additions and 313 deletions

View File

@ -2439,103 +2439,63 @@ a F a</code></pre>
</blockquote> </blockquote>
<hr /> <hr />
<h2 id="void">void</h2> <h2 id="void">void</h2>
<p>Basis Function Combinator</p> <p>Basis Function</p>
<p>True if the form on TOS is void otherwise False.</p> <p>True if the form on TOS is void otherwise False.</p>
<p>Gentzen diagram.</p>
<h3 id="definition-102">Definition</h3>
<p>if not basis.</p>
<h3 id="derivation-3">Derivation</h3>
<p>if not basis.</p>
<h3 id="source">Source</h3>
<p>if basis</p>
<h3 id="discussion-74">Discussion</h3> <h3 id="discussion-74">Discussion</h3>
<p>Lorem ipsum.</p> <p>A form is any Joy expression composed solely of lists. This represents a binary Boolean logical formula in the arithmetic of the &#x201C;Laws of Form&#x201D;, see <a href="http://www.markability.net/">The Markable Mark</a></p>
<h3 id="crosslinks-116">Crosslinks</h3>
<p>Lorem ipsum.</p>
<hr /> <hr />
<h2 id="warranty">warranty</h2> <h2 id="warranty">warranty</h2>
<p>Basis Function Combinator</p> <p>Basis Function</p>
<p>Print warranty information.</p> <p>Print warranty information.</p>
<p>Gentzen diagram.</p>
<h3 id="definition-103">Definition</h3>
<p>if not basis.</p>
<h3 id="derivation-4">Derivation</h3>
<p>if not basis.</p>
<h3 id="source-1">Source</h3>
<p>if basis</p>
<h3 id="discussion-75">Discussion</h3>
<p>Lorem ipsum.</p>
<h3 id="crosslinks-117">Crosslinks</h3>
<p>Lorem ipsum.</p>
<hr /> <hr />
<h2 id="while">while</h2> <h2 id="while">while</h2>
<p>Basis Function Combinator</p> <p>Combinator</p>
<p>swap nulco dupdipd concat loop</p> <p>A specialization of <a href="#loop">loop</a> that accepts a quoted predicate program <code>P</code> and runs it <a href="#nullary">nullary</a>.</p>
<p>Gentzen diagram.</p> <pre><code> [P] [F] while
<h3 id="definition-104">Definition</h3> ------------------- P -&gt; false
<p>if not basis.</p>
<h3 id="derivation-5">Derivation</h3> [P] [F] while
<p>if not basis.</p> --------------------- P -&gt; true
<h3 id="source-2">Source</h3> F [P] [F] while</code></pre>
<p>if basis</p> <h3 id="definition-102">Definition</h3>
<h3 id="discussion-76">Discussion</h3> <blockquote>
<p>Lorem ipsum.</p> <p><a href="#swap">swap</a> <a href="#nulco">nulco</a> <a href="#dupdipd">dupdipd</a> <a href="#concat">concat</a> <a href="#loop">loop</a></p>
<h3 id="crosslinks-118">Crosslinks</h3> </blockquote>
<p>Lorem ipsum.</p> <h3 id="crosslinks-116">Crosslinks</h3>
<p><a href="#loop">loop</a></p>
<hr /> <hr />
<h2 id="words">words</h2> <h2 id="words">words</h2>
<p>Basis Function Combinator</p> <p>Basis Function</p>
<p>Print all the words in alphabetical order.</p> <p>Print all the words in alphabetical order.</p>
<p>Gentzen diagram.</p> <h3 id="discussion-75">Discussion</h3>
<h3 id="definition-105">Definition</h3> <p>Mathematically this is a form of <a href="#id">id</a>.</p>
<p>if not basis.</p> <h3 id="crosslinks-117">Crosslinks</h3>
<h3 id="derivation-6">Derivation</h3> <p><a href="#help">help</a></p>
<p>if not basis.</p>
<h3 id="source-3">Source</h3>
<p>if basis</p>
<h3 id="discussion-77">Discussion</h3>
<p>Lorem ipsum.</p>
<h3 id="crosslinks-119">Crosslinks</h3>
<p>Lorem ipsum.</p>
<hr /> <hr />
<h2 id="x">x</h2> <h2 id="x">x</h2>
<p>(Combinator)</p> <p>Combinator</p>
<p>Take a quoted function <code>F</code> and run it with itself as the first item on the stack.</p>
<pre><code> [F] x <pre><code> [F] x
----------- -----------
[F] F</code></pre> [F] F</code></pre>
<h3 id="definition-106">Definition</h3> <h3 id="definition-103">Definition</h3>
<pre><code>dup i</code></pre> <pre><code>dup i</code></pre>
<h3 id="discussion-78">Discussion</h3> <h3 id="discussion-76">Discussion</h3>
<p>The <code>x</code> combinator &#x2026;</p> <p>The simplest recursive pattern.</p>
<p>See the <a href="https://joypy.osdn.io/notebooks/Recursion_Combinators.html">Recursion Combinators notebook</a>. as well as <a href="https://www.kevinalbrecht.com/code/joy-mirror/j05cmp.html">Recursion Theory and Joy</a> by Manfred von</p>
<hr /> <hr />
<h2 id="xor">xor</h2> <h2 id="xor">xor</h2>
<p>Basis Function Combinator</p> <p>Basis Function</p>
<p>Same as a ^ b.</p> <p>Logical bit-wise eXclusive OR.</p>
<p>Gentzen diagram.</p> <h3 id="crosslinks-118">Crosslinks</h3>
<h3 id="definition-107">Definition</h3> <p><a href="#and">and</a> <a href="#or">or</a></p>
<p>if not basis.</p>
<h3 id="derivation-7">Derivation</h3>
<p>if not basis.</p>
<h3 id="source-4">Source</h3>
<p>if basis</p>
<h3 id="discussion-79">Discussion</h3>
<p>Lorem ipsum.</p>
<h3 id="crosslinks-120">Crosslinks</h3>
<p>Lorem ipsum.</p>
<hr /> <hr />
<h2 id="zip">zip</h2> <h2 id="zip">zip</h2>
<p>Basis Function Combinator</p> <p>Function</p>
<p>Replace the two lists on the top of the stack with a list of the pairs from each list. The smallest list sets the length of the result list.</p> <p>Replace the two lists on the top of the stack with a list of the pairs from each list. The smallest list sets the length of the result list.</p>
<p>Gentzen diagram.</p> <h3 id="example-32">Example</h3>
<h3 id="definition-108">Definition</h3> <pre><code> [1 2 3] [4 5 6] zip
<p>if not basis.</p> -------------------------
<h3 id="derivation-8">Derivation</h3> [[4 1] [5 2] [6 3]]</code></pre>
<p>if not basis.</p>
<h3 id="source-5">Source</h3>
<p>if basis</p>
<h3 id="discussion-80">Discussion</h3>
<p>Lorem ipsum.</p>
<h3 id="crosslinks-121">Crosslinks</h3>
<p>Lorem ipsum.</p>
</body> </body>
</html> </html>

View File

@ -3940,127 +3940,76 @@ Function
## void ## void
Basis Function Combinator Basis Function
True if the form on TOS is void otherwise False. True if the form on TOS is void otherwise False.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. A form is any Joy expression composed solely of lists.
This represents a binary Boolean logical formula in the arithmetic of the
"Laws of Form", see [The Markable Mark](http://www.markability.net/)
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------ ------------------------------------------------------------------------
## warranty ## warranty
Basis Function Combinator Basis Function
Print warranty information. Print warranty information.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------ ------------------------------------------------------------------------
## while ## while
Basis Function Combinator Combinator
swap nulco dupdipd concat loop A specialization of [loop] that accepts a quoted predicate program `P`
and runs it [nullary].
Gentzen diagram. [P] [F] while
------------------- P -> false
[P] [F] while
--------------------- P -> true
F [P] [F] while
### Definition ### Definition
if not basis. > [swap] [nulco] [dupdipd] [concat] [loop]
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks ### Crosslinks
Lorem ipsum. [loop]
------------------------------------------------------------------------ ------------------------------------------------------------------------
## words ## words
Basis Function Combinator Basis Function
Print all the words in alphabetical order. Print all the words in alphabetical order.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. Mathematically this is a form of [id].
### Crosslinks ### Crosslinks
Lorem ipsum. [help]
-------------------- --------------------
## x ## x
(Combinator) Combinator
Take a quoted function `F` and run it with itself as the first item on
the stack.
[F] x [F] x
----------- -----------
@ -4072,66 +4021,40 @@ Lorem ipsum.
### Discussion ### Discussion
The `x` combinator ... The simplest recursive pattern.
See the [Recursion Combinators notebook](https://joypy.osdn.io/notebooks/Recursion_Combinators.html).
as well as
[Recursion Theory and Joy](https://www.kevinalbrecht.com/code/joy-mirror/j05cmp.html) by Manfred von
------------------------------------------------------------------------ ------------------------------------------------------------------------
## xor ## xor
Basis Function Combinator Basis Function
Same as a \^ b. Logical bit-wise eXclusive OR.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks ### Crosslinks
Lorem ipsum. [and]
[or]
------------------------------------------------------------------------ ------------------------------------------------------------------------
## zip ## zip
Basis Function Combinator Function
Replace the two lists on the top of the stack with a list of the pairs Replace the two lists on the top of the stack with a list of the pairs
from each list. The smallest list sets the length of the result list. from each list. The smallest list sets the length of the result list.
Gentzen diagram. ### Example
### Definition [1 2 3] [4 5 6] zip
-------------------------
[[4 1] [5 2] [6 3]]
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.

View File

@ -2,28 +2,13 @@
## void ## void
Basis Function Combinator Basis Function
True if the form on TOS is void otherwise False. True if the form on TOS is void otherwise False.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. A form is any Joy expression composed solely of lists.
This represents a binary Boolean logical formula in the arithmetic of the
"Laws of Form", see [The Markable Mark](http://www.markability.net/)
### Crosslinks
Lorem ipsum.

View File

@ -2,28 +2,7 @@
## warranty ## warranty
Basis Function Combinator Basis Function
Print warranty information. Print warranty information.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.

View File

@ -2,28 +2,23 @@
## while ## while
Basis Function Combinator Combinator
swap nulco dupdipd concat loop A specialization of [loop] that accepts a quoted predicate program `P`
and runs it [nullary].
Gentzen diagram. [P] [F] while
------------------- P -> false
[P] [F] while
--------------------- P -> true
F [P] [F] while
### Definition ### Definition
if not basis. > [swap] [nulco] [dupdipd] [concat] [loop]
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks ### Crosslinks
Lorem ipsum. [loop]

View File

@ -2,28 +2,15 @@
## words ## words
Basis Function Combinator Basis Function
Print all the words in alphabetical order. Print all the words in alphabetical order.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. Mathematically this is a form of [id].
### Crosslinks ### Crosslinks
Lorem ipsum. [help]

View File

@ -2,7 +2,10 @@
## x ## x
(Combinator) Combinator
Take a quoted function `F` and run it with itself as the first item on
the stack.
[F] x [F] x
----------- -----------
@ -14,5 +17,10 @@
### Discussion ### Discussion
The `x` combinator ... The simplest recursive pattern.
See the [Recursion Combinators notebook](https://joypy.osdn.io/notebooks/Recursion_Combinators.html).
as well as
[Recursion Theory and Joy](https://www.kevinalbrecht.com/code/joy-mirror/j05cmp.html) by Manfred von

View File

@ -2,28 +2,12 @@
## xor ## xor
Basis Function Combinator Basis Function
Same as a \^ b. Logical bit-wise eXclusive OR.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks ### Crosslinks
Lorem ipsum. [and]
[or]

View File

@ -2,29 +2,14 @@
## zip ## zip
Basis Function Combinator Function
Replace the two lists on the top of the stack with a list of the pairs Replace the two lists on the top of the stack with a list of the pairs
from each list. The smallest list sets the length of the result list. from each list. The smallest list sets the length of the result list.
Gentzen diagram. ### Example
### Definition [1 2 3] [4 5 6] zip
-------------------------
[[4 1] [5 2] [6 3]]
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.