diff --git a/docs/reference/mkref/FuncRef.html b/docs/reference/mkref/FuncRef.html index 879fc2e..bf874f1 100644 --- a/docs/reference/mkref/FuncRef.html +++ b/docs/reference/mkref/FuncRef.html @@ -2439,103 +2439,63 @@ a F a
Basis Function Combinator
+Basis Function
True if the form on TOS is void otherwise False.
-Gentzen diagram.
-if not basis.
-if not basis.
-if basis
Lorem ipsum.
-Lorem ipsum.
+A form is any Joy expression composed solely of lists. This represents a binary Boolean logical formula in the arithmetic of the “Laws of Form”, see The Markable Mark
Basis Function Combinator
+Basis Function
Print warranty information.
-Gentzen diagram.
-if not basis.
-if not basis.
-if basis
-Lorem ipsum.
-Lorem ipsum.
Basis Function Combinator
-swap nulco dupdipd concat loop
-Gentzen diagram.
-if not basis.
-if not basis.
-if basis
-Lorem ipsum.
-Lorem ipsum.
+Combinator
+A specialization of loop that accepts a quoted predicate program P and runs it nullary.
[P] [F] while
+------------------- P -> false
+
+ [P] [F] while
+--------------------- P -> true
+ F [P] [F] while
++ ++
Basis Function Combinator
+Basis Function
Print all the words in alphabetical order.
-Gentzen diagram.
-if not basis.
-if not basis.
-if basis
-Lorem ipsum.
-Lorem ipsum.
+Mathematically this is a form of id.
+(Combinator)
+Combinator
+Take a quoted function F and run it with itself as the first item on the stack.
[F] x
-----------
[F] F
-dup i
-The x combinator …
The simplest recursive pattern.
+See the Recursion Combinators notebook. as well as Recursion Theory and Joy by Manfred von
Basis Function Combinator
-Same as a ^ b.
-Gentzen diagram.
-if not basis.
-if not basis.
-if basis
-Lorem ipsum.
-Lorem ipsum.
+Basis Function
+Logical bit-wise eXclusive OR.
+Basis Function Combinator
+Function
Replace the two lists on the top of the stack with a list of the pairs from each list. The smallest list sets the length of the result list.
-Gentzen diagram.
-if not basis.
-if not basis.
-if basis
-Lorem ipsum.
-Lorem ipsum.
+ [1 2 3] [4 5 6] zip
+-------------------------
+ [[4 1] [5 2] [6 3]]