298 lines
24 KiB
HTML
298 lines
24 KiB
HTML
|
||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
|
||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
|
||
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
<head>
|
||
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
|
||
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
||
<title>Newton’s method — Thun 0.4.1 documentation</title>
|
||
<link rel="stylesheet" href="../_static/alabaster.css" type="text/css" />
|
||
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
|
||
<script type="text/javascript" src="../_static/documentation_options.js"></script>
|
||
<script type="text/javascript" src="../_static/jquery.js"></script>
|
||
<script type="text/javascript" src="../_static/underscore.js"></script>
|
||
<script type="text/javascript" src="../_static/doctools.js"></script>
|
||
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||
<link rel="index" title="Index" href="../genindex.html" />
|
||
<link rel="search" title="Search" href="../search.html" />
|
||
<link rel="next" title="Traversing Datastructures with Zippers" href="Zipper.html" />
|
||
<link rel="prev" title="Using x to Generate Values" href="Generator_Programs.html" />
|
||
|
||
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
|
||
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
|
||
|
||
</head><body>
|
||
|
||
|
||
<div class="document">
|
||
<div class="documentwrapper">
|
||
<div class="bodywrapper">
|
||
<div class="body" role="main">
|
||
|
||
<div class="section" id="newton-s-method">
|
||
<h1><a class="reference external" href="https://en.wikipedia.org/wiki/Newton%27s_method">Newton’s method</a><a class="headerlink" href="#newton-s-method" title="Permalink to this headline">¶</a></h1>
|
||
<p>Let’s use the Newton-Raphson method for finding the root of an equation
|
||
to write a function that can compute the square root of a number.</p>
|
||
<p>Cf. <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
|
||
Hughes</a></p>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">notebook_preamble</span> <span class="k">import</span> <span class="n">J</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">define</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="section" id="a-generator-for-approximations">
|
||
<h2>A Generator for Approximations<a class="headerlink" href="#a-generator-for-approximations" title="Permalink to this headline">¶</a></h2>
|
||
<p>To make a generator that generates successive approximations let’s start
|
||
by assuming an initial approximation and then derive the function that
|
||
computes the next approximation:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="n">F</span>
|
||
<span class="o">---------</span>
|
||
<span class="n">a</span><span class="s1">'</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="section" id="a-function-to-compute-the-next-approximation">
|
||
<h3>A Function to Compute the Next Approximation<a class="headerlink" href="#a-function-to-compute-the-next-approximation" title="Permalink to this headline">¶</a></h3>
|
||
<p>This is the equation for computing the next approximate value of the
|
||
square root:</p>
|
||
<p><span class="math notranslate nohighlight">\(a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}\)</span></p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span> <span class="n">n</span> <span class="n">a</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span> <span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="p">(</span><span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>The function we want has the argument <code class="docutils literal notranslate"><span class="pre">n</span></code> in it:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">F</span> <span class="o">==</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="make-it-into-a-generator">
|
||
<h3>Make it into a Generator<a class="headerlink" href="#make-it-into-a-generator" title="Permalink to this headline">¶</a></h3>
|
||
<p>Our generator would be created by:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">dup</span> <span class="n">F</span><span class="p">]</span> <span class="n">make_generator</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>With n as part of the function F, but n is the input to the sqrt
|
||
function we’re writing. If we let 1 be the initial approximation:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">1</span> <span class="n">n</span> <span class="mi">1</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="mi">1</span> <span class="n">n</span><span class="o">/</span><span class="mi">1</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="mi">1</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">n</span><span class="o">+</span><span class="mi">1</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>The generator can be written as:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">23</span> <span class="mi">1</span> <span class="n">swap</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
|
||
<span class="mi">1</span> <span class="mi">23</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
|
||
<span class="mi">1</span> <span class="p">[</span><span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
|
||
<span class="mi">1</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">make_generator</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'gsra 1 swap [over / + 2 /] cons [dup] swoncat make_generator'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'23 gsra'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="mi">1</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">codireco</span><span class="p">]</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Let’s drive the generator a few time (with the <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator) and
|
||
square the approximation to see how well it works…</p>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'23 gsra 6 [x popd] times first sqr'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">23.0000000001585</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="finding-consecutive-approximations-within-a-tolerance">
|
||
<h2>Finding Consecutive Approximations within a Tolerance<a class="headerlink" href="#finding-consecutive-approximations-within-a-tolerance" title="Permalink to this headline">¶</a></h2>
|
||
<p>From <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
|
||
Hughes</a>:</p>
|
||
<blockquote>
|
||
<div>The remainder of a square root finder is a function <em>within</em>, which
|
||
takes a tolerance and a list of approximations and looks down the
|
||
list for two successive approximations that differ by no more than
|
||
the given tolerance.</div></blockquote>
|
||
<p>(And note that by “list” he means a lazily-evaluated list.)</p>
|
||
<p>Using the <em>output</em> <code class="docutils literal notranslate"><span class="pre">[a</span> <span class="pre">G]</span></code> of the above generator for square root
|
||
approximations, and further assuming that the first term a has been
|
||
generated already and epsilon ε is handy on the stack…</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="n">b</span>
|
||
|
||
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">></span>
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="section" id="predicate">
|
||
<h3>Predicate<a class="headerlink" href="#predicate" title="Permalink to this headline">¶</a></h3>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span><span class="p">]</span> <span class="n">dip</span> <span class="o"><=</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="n">a</span><span class="o">-</span><span class="n">b</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span><span class="o"><=</span><span class="n">ε</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'_within_P [first - abs] dip <='</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="base-case">
|
||
<h3>Base-Case<a class="headerlink" href="#base-case" title="Permalink to this headline">¶</a></h3>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">roll</span><span class="o"><</span> <span class="n">popop</span> <span class="n">first</span>
|
||
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">a</span> <span class="n">popop</span> <span class="n">first</span>
|
||
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span>
|
||
<span class="n">b</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'_within_B roll< popop first'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="recur">
|
||
<h3>Recur<a class="headerlink" href="#recur" title="Permalink to this headline">¶</a></h3>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
|
||
</pre></div>
|
||
</div>
|
||
<ol class="arabic simple">
|
||
<li>Discard a.</li>
|
||
<li>Use <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator to generate next term from <code class="docutils literal notranslate"><span class="pre">G</span></code>.</li>
|
||
<li>Run <code class="docutils literal notranslate"><span class="pre">within</span></code> with <code class="docutils literal notranslate"><span class="pre">i</span></code> (it is a “tail-recursive” function.)</li>
|
||
</ol>
|
||
<p>Pretty straightforward:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">popd</span> <span class="n">x</span><span class="p">]</span> <span class="n">dip</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">popd</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'_within_R [popd x] dip'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="setting-up">
|
||
<h3>Setting up<a class="headerlink" href="#setting-up" title="Permalink to this headline">¶</a></h3>
|
||
<p>The recursive function we have defined so far needs a slight preamble:
|
||
<code class="docutils literal notranslate"><span class="pre">x</span></code> to prime the generator and the epsilon value to use:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="n">a</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="o">...</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="o">...</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">'within x 0.000000001 [_within_P] [_within_B] [_within_R] tailrec'</span><span class="p">)</span>
|
||
<span class="n">define</span><span class="p">(</span><span class="s1">'sqrt gsra within'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Try it out…</p>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'36 sqrt'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">6.0</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">'23 sqrt'</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Check it.</p>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span><span class="o">**</span><span class="mi">2</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">22.999999999999996</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="code ipython3 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">math</span> <span class="k">import</span> <span class="n">sqrt</span>
|
||
|
||
<span class="n">sqrt</span><span class="p">(</span><span class="mi">23</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||
<div class="sphinxsidebarwrapper">
|
||
<h3><a href="../index.html">Table Of Contents</a></h3>
|
||
<ul>
|
||
<li><a class="reference internal" href="#">Newton’s method</a><ul>
|
||
<li><a class="reference internal" href="#a-generator-for-approximations">A Generator for Approximations</a><ul>
|
||
<li><a class="reference internal" href="#a-function-to-compute-the-next-approximation">A Function to Compute the Next Approximation</a></li>
|
||
<li><a class="reference internal" href="#make-it-into-a-generator">Make it into a Generator</a></li>
|
||
</ul>
|
||
</li>
|
||
<li><a class="reference internal" href="#finding-consecutive-approximations-within-a-tolerance">Finding Consecutive Approximations within a Tolerance</a><ul>
|
||
<li><a class="reference internal" href="#predicate">Predicate</a></li>
|
||
<li><a class="reference internal" href="#base-case">Base-Case</a></li>
|
||
<li><a class="reference internal" href="#recur">Recur</a></li>
|
||
<li><a class="reference internal" href="#setting-up">Setting up</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
<div class="relations">
|
||
<h3>Related Topics</h3>
|
||
<ul>
|
||
<li><a href="../index.html">Documentation overview</a><ul>
|
||
<li><a href="index.html">Essays about Programming in Joy</a><ul>
|
||
<li>Previous: <a href="Generator_Programs.html" title="previous chapter">Using <code class="docutils literal notranslate"><span class="pre">x</span></code> to Generate Values</a></li>
|
||
<li>Next: <a href="Zipper.html" title="next chapter">Traversing Datastructures with Zippers</a></li>
|
||
</ul></li>
|
||
</ul></li>
|
||
</ul>
|
||
</div>
|
||
<div role="note" aria-label="source link">
|
||
<h3>This Page</h3>
|
||
<ul class="this-page-menu">
|
||
<li><a href="../_sources/notebooks/Newton-Raphson.rst.txt"
|
||
rel="nofollow">Show Source</a></li>
|
||
</ul>
|
||
</div>
|
||
<div id="searchbox" style="display: none" role="search">
|
||
<h3>Quick search</h3>
|
||
<div class="searchformwrapper">
|
||
<form class="search" action="../search.html" method="get">
|
||
<input type="text" name="q" />
|
||
<input type="submit" value="Go" />
|
||
<input type="hidden" name="check_keywords" value="yes" />
|
||
<input type="hidden" name="area" value="default" />
|
||
</form>
|
||
</div>
|
||
</div>
|
||
<script type="text/javascript">$('#searchbox').show(0);</script>
|
||
</div>
|
||
</div>
|
||
<div class="clearer"></div>
|
||
</div>
|
||
<div class="footer" role="contentinfo">
|
||
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">
|
||
<img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" />
|
||
</a>
|
||
<br />
|
||
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Thun Documentation</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://joypy.osdn.io/" property="cc:attributionName" rel="cc:attributionURL">Simon Forman</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://osdn.net/projects/joypy/" rel="dct:source">https://osdn.net/projects/joypy/</a>.
|
||
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.3.
|
||
</div>
|
||
|
||
</body>
|
||
</html> |