Thun/docs/Advent_of_Code_2017_Decembe...

977 lines
19 KiB
ReStructuredText

Advent of Code 2017
===================
December 3rd
------------
You come across an experimental new kind of memory stored on an infinite
two-dimensional grid.
Each square on the grid is allocated in a spiral pattern starting at a
location marked 1 and then counting up while spiraling outward. For
example, the first few squares are allocated like this:
::
17 16 15 14 13
18 5 4 3 12
19 6 1 2 11
20 7 8 9 10
21 22 23---> ...
While this is very space-efficient (no squares are skipped), requested
data must be carried back to square 1 (the location of the only access
port for this memory system) by programs that can only move up, down,
left, or right. They always take the shortest path: the Manhattan
Distance between the location of the data and square 1.
For example:
- Data from square 1 is carried 0 steps, since it's at the access port.
- Data from square 12 is carried 3 steps, such as: down, left, left.
- Data from square 23 is carried only 2 steps: up twice.
- Data from square 1024 must be carried 31 steps.
How many steps are required to carry the data from the square identified
in your puzzle input all the way to the access port?
Analysis
~~~~~~~~
I freely admit that I worked out the program I wanted to write using
graph paper and some Python doodles. There's no point in trying to write
a Joy program until I'm sure I understand the problem well enough.
The first thing I did was to write a column of numbers from 1 to n (32
as it happens) and next to them the desired output number, to look for
patterns directly:
::
1 0
2 1
3 2
4 1
5 2
6 1
7 2
8 1
9 2
10 3
11 2
12 3
13 4
14 3
15 2
16 3
17 4
18 3
19 2
20 3
21 4
22 3
23 2
24 3
25 4
26 5
27 4
28 3
29 4
30 5
31 6
32 5
There are four groups repeating for a given "rank", then the pattern
enlarges and four groups repeat again, etc.
::
1 2
3 2 3 4
5 4 3 4 5 6
7 6 5 4 5 6 7 8
9 8 7 6 5 6 7 8 9 10
Four of this pyramid interlock to tile the plane extending from the
initial "1" square.
::
2 3 | 4 5 | 6 7 | 8 9
10 11 12 13|14 15 16 17|18 19 20 21|22 23 24 25
And so on.
We can figure out the pattern for a row of the pyramid at a given "rank"
:math:`k`:
:math:`2k - 1, 2k - 2, ..., k, k + 1, k + 2, ..., 2k`
or
:math:`k + (k - 1), k + (k - 2), ..., k, k + 1, k + 2, ..., k + k`
This shows that the series consists at each place of :math:`k` plus some
number that begins at :math:`k - 1`, decreases to zero, then increases
to :math:`k`. Each row has :math:`2k` members.
Let's figure out how, given an index into a row, we can calculate the
value there. The index will be from 0 to :math:`k - 1`.
Let's look at an example, with :math:`k = 4`:
::
0 1 2 3 4 5 6 7
7 6 5 4 5 6 7 8
.. code:: ipython3
k = 4
Subtract :math:`k` from the index and take the absolute value:
.. code:: ipython3
for n in range(2 * k):
print(abs(n - k),)
.. parsed-literal::
4
3
2
1
0
1
2
3
Not quite. Subtract :math:`k - 1` from the index and take the absolute
value:
.. code:: ipython3
for n in range(2 * k):
print(abs(n - (k - 1)), end=' ')
.. parsed-literal::
3 2 1 0 1 2 3 4
Great, now add :math:`k`...
.. code:: ipython3
for n in range(2 * k):
print(abs(n - (k - 1)) + k, end=' ')
.. parsed-literal::
7 6 5 4 5 6 7 8
So to write a function that can give us the value of a row at a given
index:
.. code:: ipython3
def row_value(k, i):
i %= (2 * k) # wrap the index at the row boundary.
return abs(i - (k - 1)) + k
.. code:: ipython3
k = 5
for i in range(2 * k):
print(row_value(k, i), end=' ')
.. parsed-literal::
9 8 7 6 5 6 7 8 9 10
(I'm leaving out details of how I figured this all out and just giving
the relevent bits. It took a little while to zero in of the aspects of
the pattern that were important for the task.)
Finding the rank and offset of a number.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now that we can compute the desired output value for a given rank and
the offset (index) into that rank, we need to determine how to find the
rank and offset of a number.
The rank is easy to find by iteratively stripping off the amount already
covered by previous ranks until you find the one that brackets the
target number. Because each row is :math:`2k` places and there are
:math:`4` per rank each rank contains :math:`8k` places. Counting the
initial square we have:
:math:`corner_k = 1 + \sum_{n=1}^k 8n`
I'm not mathematically sophisticated enough to turn this directly into a
formula (but Sympy is, see below.) I'm going to write a simple Python
function to iterate and search:
.. code:: ipython3
def rank_and_offset(n):
assert n >= 2 # Guard the domain.
n -= 2 # Subtract two,
# one for the initial square,
# and one because we are counting from 1 instead of 0.
k = 1
while True:
m = 8 * k # The number of places total in this rank, 4(2k).
if n < m:
return k, n % (2 * k)
n -= m # Remove this rank's worth.
k += 1
.. code:: ipython3
for n in range(2, 51):
print(n, rank_and_offset(n))
.. parsed-literal::
2 (1, 0)
3 (1, 1)
4 (1, 0)
5 (1, 1)
6 (1, 0)
7 (1, 1)
8 (1, 0)
9 (1, 1)
10 (2, 0)
11 (2, 1)
12 (2, 2)
13 (2, 3)
14 (2, 0)
15 (2, 1)
16 (2, 2)
17 (2, 3)
18 (2, 0)
19 (2, 1)
20 (2, 2)
21 (2, 3)
22 (2, 0)
23 (2, 1)
24 (2, 2)
25 (2, 3)
26 (3, 0)
27 (3, 1)
28 (3, 2)
29 (3, 3)
30 (3, 4)
31 (3, 5)
32 (3, 0)
33 (3, 1)
34 (3, 2)
35 (3, 3)
36 (3, 4)
37 (3, 5)
38 (3, 0)
39 (3, 1)
40 (3, 2)
41 (3, 3)
42 (3, 4)
43 (3, 5)
44 (3, 0)
45 (3, 1)
46 (3, 2)
47 (3, 3)
48 (3, 4)
49 (3, 5)
50 (4, 0)
.. code:: ipython3
for n in range(2, 51):
k, i = rank_and_offset(n)
print(n, row_value(k, i))
.. parsed-literal::
2 1
3 2
4 1
5 2
6 1
7 2
8 1
9 2
10 3
11 2
12 3
13 4
14 3
15 2
16 3
17 4
18 3
19 2
20 3
21 4
22 3
23 2
24 3
25 4
26 5
27 4
28 3
29 4
30 5
31 6
32 5
33 4
34 3
35 4
36 5
37 6
38 5
39 4
40 3
41 4
42 5
43 6
44 5
45 4
46 3
47 4
48 5
49 6
50 7
Putting it all together
~~~~~~~~~~~~~~~~~~~~~~~
.. code:: ipython3
def row_value(k, i):
return abs(i - (k - 1)) + k
def rank_and_offset(n):
n -= 2 # Subtract two,
# one for the initial square,
# and one because we are counting from 1 instead of 0.
k = 1
while True:
m = 8 * k # The number of places total in this rank, 4(2k).
if n < m:
return k, n % (2 * k)
n -= m # Remove this rank's worth.
k += 1
def aoc20173(n):
if n <= 1:
return 0
k, i = rank_and_offset(n)
return row_value(k, i)
.. code:: ipython3
aoc20173(23)
.. parsed-literal::
2
.. code:: ipython3
aoc20173(23000)
.. parsed-literal::
105
.. code:: ipython3
aoc20173(23000000000000)
.. parsed-literal::
4572225
Sympy to the Rescue
===================
Find the rank for large numbers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Using e.g. Sympy we can find the rank directly by solving for the roots
of an equation. For large numbers this will (eventually) be faster than
iterating as ``rank_and_offset()`` does.
.. code:: ipython3
from sympy import floor, lambdify, solve, symbols
from sympy import init_printing
init_printing()
.. code:: ipython3
k = symbols('k')
Since
:math:`1 + 2 + 3 + ... + N = \frac{N(N + 1)}{2}`
and
:math:`\sum_{n=1}^k 8n = 8(\sum_{n=1}^k n) = 8\frac{k(k + 1)}{2}`
We want:
.. code:: ipython3
E = 2 + 8 * k * (k + 1) / 2 # For the reason for adding 2 see above.
E
.. math::
\displaystyle 4 k \left(k + 1\right) + 2
We can write a function to solve for :math:`k` given some :math:`n`...
.. code:: ipython3
def rank_of(n):
return floor(max(solve(E - n, k))) + 1
First ``solve()`` for :math:`E - n = 0` which has two solutions (because
the equation is quadratic so it has two roots) and since we only care
about the larger one we use ``max()`` to select it. It will generally
not be a nice integer (unless :math:`n` is the number of an end-corner
of a rank) so we take the ``floor()`` and add 1 to get the integer rank
of :math:`n`. (Taking the ``ceiling()`` gives off-by-one errors on the
rank boundaries. I don't know why. I'm basically like a monkey doing
math here.) =-D
It gives correct answers:
.. code:: ipython3
for n in (9, 10, 25, 26, 49, 50):
print(n, rank_of(n))
.. parsed-literal::
9 1
10 2
25 2
26 3
49 3
50 4
And it runs much faster (at least for large numbers):
.. code:: ipython3
%time rank_of(23000000000000) # Compare runtime with rank_and_offset()!
.. parsed-literal::
CPU times: user 27.8 ms, sys: 5 µs, total: 27.8 ms
Wall time: 27.3 ms
.. math::
\displaystyle 2397916
.. code:: ipython3
%time rank_and_offset(23000000000000)
.. parsed-literal::
CPU times: user 216 ms, sys: 89 µs, total: 216 ms
Wall time: 215 ms
.. math::
\displaystyle \left( 2397916, \ 223606\right)
After finding the rank you would still have to find the actual value of
the rank's first corner and subtract it (plus 2) from the number and
compute the offset as above and then the final output, but this overhead
is partially shared by the other method, and overshadowed by the time it
(the other iterative method) would take for really big inputs.
The fun thing to do here would be to graph the actual runtime of both
methods against each other to find the trade-off point.
It took me a second to realize I could do this...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sympy is a *symbolic* math library, and it supports symbolic
manipulation of equations. I can put in :math:`y` (instead of a value)
and ask it to solve for :math:`k`.
.. code:: ipython3
y = symbols('y')
.. code:: ipython3
g, f = solve(E - y, k)
The equation is quadratic so there are two roots, we are interested in
the greater one...
.. code:: ipython3
g
.. math::
\displaystyle - \frac{\sqrt{y - 1}}{2} - \frac{1}{2}
.. code:: ipython3
f
.. math::
\displaystyle \frac{\sqrt{y - 1}}{2} - \frac{1}{2}
Now we can take the ``floor()``, add 1, and ``lambdify()`` the equation
to get a Python function that calculates the rank directly.
.. code:: ipython3
floor(f) + 1
.. math::
\displaystyle \left\lfloor{\frac{\sqrt{y - 1}}{2} - \frac{1}{2}}\right\rfloor + 1
.. code:: ipython3
F = lambdify(y, floor(f) + 1)
.. code:: ipython3
for n in (9, 10, 25, 26, 49, 50):
print(n, int(F(n)))
.. parsed-literal::
9 1
10 2
25 2
26 3
49 3
50 4
It's pretty fast.
.. code:: ipython3
%time int(F(23000000000000)) # The clear winner.
.. parsed-literal::
CPU times: user 60 µs, sys: 4 µs, total: 64 µs
Wall time: 67 µs
.. math::
\displaystyle 2397916
Knowing the equation we could write our own function manually, but the
speed is no better.
.. code:: ipython3
from math import floor as mfloor, sqrt
def mrank_of(n):
return int(mfloor(sqrt(n - 1) / 2 - 0.5) + 1)
.. code:: ipython3
%time mrank_of(23000000000000)
.. parsed-literal::
CPU times: user 7 µs, sys: 1 µs, total: 8 µs
Wall time: 10 µs
.. math::
\displaystyle 2397916
Given :math:`n` and a rank, compute the offset.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now that we have a fast way to get the rank, we still need to use it to
compute the offset into a pyramid row.
.. code:: ipython3
def offset_of(n, k):
return (n - 2 + 4 * k * (k - 1)) % (2 * k)
(Note the sneaky way the sign changes from :math:`k(k + 1)` to
:math:`k(k - 1)`. This is because we want to subract the
:math:`(k - 1)`\ th rank's total places (its own and those of lesser
rank) from our :math:`n` of rank :math:`k`. Substituting :math:`k - 1`
for :math:`k` in :math:`k(k + 1)` gives :math:`(k - 1)(k - 1 + 1)`,
which of course simplifies to :math:`k(k - 1)`.)
.. code:: ipython3
offset_of(23000000000000, 2397916)
.. math::
\displaystyle 223606
So, we can compute the rank, then the offset, then the row value.
.. code:: ipython3
def rank_of(n):
return int(mfloor(sqrt(n - 1) / 2 - 0.5) + 1)
def offset_of(n, k):
return (n - 2 + 4 * k * (k - 1)) % (2 * k)
def row_value(k, i):
return abs(i - (k - 1)) + k
def aoc20173(n):
k = rank_of(n)
i = offset_of(n, k)
return row_value(k, i)
.. code:: ipython3
aoc20173(23)
.. math::
\displaystyle 2
.. code:: ipython3
aoc20173(23000)
.. math::
\displaystyle 105
.. code:: ipython3
aoc20173(23000000000000)
.. math::
\displaystyle 4572225
.. code:: ipython3
%time aoc20173(23000000000000000000000000) # Fast for large values.
.. parsed-literal::
CPU times: user 22 µs, sys: 2 µs, total: 24 µs
Wall time: 26.7 µs
.. math::
\displaystyle 2690062495969
A Joy Version
=============
At this point I feel confident that I can implement a concise version of
this code in Joy. ;-)
.. code:: ipython3
from notebook_preamble import J, V, define
``rank_of``
~~~~~~~~~~~
::
n rank_of
---------------
k
The translation is straightforward.
::
int(floor(sqrt(n - 1) / 2 - 0.5) + 1)
rank_of == -- sqrt 2 / 0.5 - floor ++
.. code:: ipython3
define('rank_of -- sqrt 2 / 0.5 - floor ++')
``offset_of``
~~~~~~~~~~~~~
::
n k offset_of
-------------------
i
(n - 2 + 4 * k * (k - 1)) % (2 * k)
A little tricky...
::
n k dup 2 *
n k k 2 *
n k k*2 [Q] dip %
n k Q k*2 %
n k dup --
n k k --
n k k-1 4 * * 2 + -
n k*k-1*4 2 + -
n k*k-1*4+2 -
n-k*k-1*4+2
n-k*k-1*4+2 k*2 %
n-k*k-1*4+2%k*2
Ergo:
::
offset_of == dup 2 * [dup -- 4 * * 2 + -] dip %
.. code:: ipython3
define('offset_of dup 2 * [dup -- 4 * * 2 + -] dip %')
``row_value``
~~~~~~~~~~~~~
::
k i row_value
-------------------
n
abs(i - (k - 1)) + k
k i over -- - abs +
k i k -- - abs +
k i k-1 - abs +
k i-k-1 abs +
k |i-k-1| +
k+|i-k-1|
.. code:: ipython3
define('row_value over -- - abs +')
``aoc2017.3``
~~~~~~~~~~~~~
::
n aoc2017.3
-----------------
m
n dup rank_of
n k [offset_of] dupdip
n k offset_of k
i k swap row_value
k i row_value
m
.. code:: ipython3
define('aoc2017.3 dup rank_of [offset_of] dupdip swap row_value')
.. code:: ipython3
J('23 aoc2017.3')
.. parsed-literal::
2
.. code:: ipython3
J('23000 aoc2017.3')
.. parsed-literal::
105
.. code:: ipython3
V('23000000000000 aoc2017.3')
.. parsed-literal::
• 23000000000000 aoc2017.3
23000000000000 • aoc2017.3
23000000000000 • dup rank_of [offset_of] dupdip swap row_value
23000000000000 23000000000000 • rank_of [offset_of] dupdip swap row_value
23000000000000 23000000000000 • -- sqrt 2 / 0.5 - floor ++ [offset_of] dupdip swap row_value
23000000000000 22999999999999 • sqrt 2 / 0.5 - floor ++ [offset_of] dupdip swap row_value
23000000000000 4795831.523312615 • 2 / 0.5 - floor ++ [offset_of] dupdip swap row_value
23000000000000 4795831.523312615 2 • / 0.5 - floor ++ [offset_of] dupdip swap row_value
23000000000000 2397915.7616563076 • 0.5 - floor ++ [offset_of] dupdip swap row_value
23000000000000 2397915.7616563076 0.5 • - floor ++ [offset_of] dupdip swap row_value
23000000000000 2397915.2616563076 • floor ++ [offset_of] dupdip swap row_value
23000000000000 2397915 • ++ [offset_of] dupdip swap row_value
23000000000000 2397916 • [offset_of] dupdip swap row_value
23000000000000 2397916 [offset_of] • dupdip swap row_value
23000000000000 2397916 • offset_of 2397916 swap row_value
23000000000000 2397916 • dup 2 * [dup -- 4 * * 2 + -] dip % 2397916 swap row_value
23000000000000 2397916 2397916 • 2 * [dup -- 4 * * 2 + -] dip % 2397916 swap row_value
23000000000000 2397916 2397916 2 • * [dup -- 4 * * 2 + -] dip % 2397916 swap row_value
23000000000000 2397916 4795832 • [dup -- 4 * * 2 + -] dip % 2397916 swap row_value
23000000000000 2397916 4795832 [dup -- 4 * * 2 + -] • dip % 2397916 swap row_value
23000000000000 2397916 • dup -- 4 * * 2 + - 4795832 % 2397916 swap row_value
23000000000000 2397916 2397916 • -- 4 * * 2 + - 4795832 % 2397916 swap row_value
23000000000000 2397916 2397915 • 4 * * 2 + - 4795832 % 2397916 swap row_value
23000000000000 2397916 2397915 4 • * * 2 + - 4795832 % 2397916 swap row_value
23000000000000 2397916 9591660 • * 2 + - 4795832 % 2397916 swap row_value
23000000000000 22999994980560 • 2 + - 4795832 % 2397916 swap row_value
23000000000000 22999994980560 2 • + - 4795832 % 2397916 swap row_value
23000000000000 22999994980562 • - 4795832 % 2397916 swap row_value
5019438 • 4795832 % 2397916 swap row_value
5019438 4795832 • % 2397916 swap row_value
223606 • 2397916 swap row_value
223606 2397916 • swap row_value
2397916 223606 • row_value
2397916 223606 • over -- - abs +
2397916 223606 2397916 • -- - abs +
2397916 223606 2397915 • - abs +
2397916 -2174309 • abs +
2397916 2174309 • +
4572225 •
::
rank_of == -- sqrt 2 / 0.5 - floor ++
offset_of == dup 2 * [dup -- 4 * * 2 + -] dip %
row_value == over -- - abs +
aoc2017.3 == dup rank_of [offset_of] dupdip swap row_value