621 lines
12 KiB
ReStructuredText
621 lines
12 KiB
ReStructuredText
Treating Trees II: ``treestep``
|
||
===============================
|
||
|
||
Let’s consider a tree structure, similar to one described `“Why
|
||
functional programming matters” by John
|
||
Hughes <https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf>`__,
|
||
that consists of a node value followed by zero or more child trees. (The
|
||
asterisk is meant to indicate the `Kleene
|
||
star <https://en.wikipedia.org/wiki/Kleene_star>`__.)
|
||
|
||
::
|
||
|
||
tree = [] | [node tree*]
|
||
|
||
In the spirit of ``step`` we are going to define a combinator
|
||
``treestep`` which expects a tree and three additional items: a
|
||
base-case function ``[B]``, and two quoted programs ``[N]`` and ``[C]``.
|
||
|
||
::
|
||
|
||
tree [B] [N] [C] treestep
|
||
|
||
If the current tree node is empty then just execute ``B``:
|
||
|
||
::
|
||
|
||
[] [B] [N] [C] treestep
|
||
---------------------------
|
||
[] B
|
||
|
||
Otherwise, evaluate ``N`` on the node value, ``map`` the whole function
|
||
(abbreviated here as ``K``) over the child trees recursively, and then
|
||
combine the result with ``C``.
|
||
|
||
::
|
||
|
||
[node tree*] [B] [N] [C] treestep
|
||
--------------------------------------- w/ K == [B] [N] [C] treestep
|
||
node N [tree*] [K] map C
|
||
|
||
(Later on we’ll experiment with making ``map`` part of ``C`` so you can
|
||
use other combinators.)
|
||
|
||
Derive the recursive function.
|
||
------------------------------
|
||
|
||
We can begin to derive it by finding the ``ifte`` stage that ``genrec``
|
||
will produce.
|
||
|
||
::
|
||
|
||
K == [not] [B] [R0] [R1] genrec
|
||
== [not] [B] [R0 [K] R1] ifte
|
||
|
||
So we just have to derive ``J``:
|
||
|
||
::
|
||
|
||
J == R0 [K] R1
|
||
|
||
The behavior of ``J`` is to accept a (non-empty) tree node and arrive at
|
||
the desired outcome.
|
||
|
||
::
|
||
|
||
[node tree*] J
|
||
------------------------------
|
||
node N [tree*] [K] map C
|
||
|
||
So ``J`` will have some form like:
|
||
|
||
::
|
||
|
||
J == ... [N] ... [K] ... [C] ...
|
||
|
||
Let’s dive in. First, unquote the node and ``dip`` ``N``.
|
||
|
||
::
|
||
|
||
[node tree*] uncons [N] dip
|
||
node [tree*] [N] dip
|
||
node N [tree*]
|
||
|
||
Next, ``map`` ``K`` over the child trees and combine with ``C``.
|
||
|
||
::
|
||
|
||
node N [tree*] [K] map C
|
||
node N [tree*] [K] map C
|
||
node N [K.tree*] C
|
||
|
||
So:
|
||
|
||
::
|
||
|
||
J == uncons [N] dip [K] map C
|
||
|
||
Plug it in and convert to ``genrec``:
|
||
|
||
::
|
||
|
||
K == [not] [B] [J ] ifte
|
||
== [not] [B] [uncons [N] dip [K] map C] ifte
|
||
== [not] [B] [uncons [N] dip] [map C] genrec
|
||
|
||
Extract the givens to parameterize the program.
|
||
-----------------------------------------------
|
||
|
||
Working backwards:
|
||
|
||
::
|
||
|
||
[not] [B] [uncons [N] dip] [map C] genrec
|
||
[B] [not] swap [uncons [N] dip] [map C] genrec
|
||
[B] [uncons [N] dip] [[not] swap] dip [map C] genrec
|
||
^^^^^^^^^^^^^^^^
|
||
[B] [[N] dip] [uncons] swoncat [[not] swap] dip [map C] genrec
|
||
[B] [N] [dip] cons [uncons] swoncat [[not] swap] dip [map C] genrec
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
Extract a couple of auxiliary definitions:
|
||
|
||
::
|
||
|
||
TS.0 == [[not] swap] dip
|
||
TS.1 == [dip] cons [uncons] swoncat
|
||
|
||
::
|
||
|
||
[B] [N] TS.1 TS.0 [map C] genrec
|
||
[B] [N] [map C] [TS.1 TS.0] dip genrec
|
||
[B] [N] [C] [map] swoncat [TS.1 TS.0] dip genrec
|
||
|
||
The givens are all to the left so we have our definition.
|
||
|
||
(alternate) Extract the givens to parameterize the program.
|
||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
||
Working backwards:
|
||
|
||
::
|
||
|
||
[not] [B] [uncons [N] dip] [map C] genrec
|
||
[not] [B] [N] [dip] cons [uncons] swoncat [map C] genrec
|
||
[B] [N] [not] roll> [dip] cons [uncons] swoncat [map C] genrec
|
||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||
|
||
Define ``treestep``
|
||
-------------------
|
||
|
||
.. code:: ipython2
|
||
|
||
from notebook_preamble import D, J, V, define, DefinitionWrapper
|
||
|
||
.. code:: ipython2
|
||
|
||
DefinitionWrapper.add_definitions('''
|
||
|
||
_treestep_0 == [[not] swap] dip
|
||
_treestep_1 == [dip] cons [uncons] swoncat
|
||
treegrind == [_treestep_1 _treestep_0] dip genrec
|
||
treestep == [map] swoncat treegrind
|
||
|
||
''', D)
|
||
|
||
Examples
|
||
--------
|
||
|
||
Consider trees, the nodes of which are integers. We can find the sum of
|
||
all nodes in a tree with this function:
|
||
|
||
::
|
||
|
||
sumtree == [pop 0] [] [sum +] treestep
|
||
|
||
.. code:: ipython2
|
||
|
||
define('sumtree == [pop 0] [] [sum +] treestep')
|
||
|
||
Running this function on an empty tree value gives zero:
|
||
|
||
::
|
||
|
||
[] [pop 0] [] [sum +] treestep
|
||
------------------------------------
|
||
0
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[] sumtree') # Empty tree.
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
0
|
||
|
||
|
||
Running it on a non-empty node:
|
||
|
||
::
|
||
|
||
[n tree*] [pop 0] [] [sum +] treestep
|
||
n [tree*] [[pop 0] [] [sum +] treestep] map sum +
|
||
n [ ... ] sum +
|
||
n m +
|
||
n+m
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23] sumtree') # No child trees.
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
23
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 []] sumtree') # Child tree, empty.
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
23
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 [2 [4]] [3]] sumtree') # Non-empty child trees.
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
32
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 [2 [8] [9]] [3] [4 []]] sumtree') # Etc...
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
49
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 [2 [8] [9]] [3] [4 []]] [pop 0] [] [cons sum] treestep') # Alternate "spelling".
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
49
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 23] [cons] treestep') # Replace each node.
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[23 [23 [23] [23]] [23] [23 []]]
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 1] [cons] treestep')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[1 [1 [1] [1]] [1] [1 []]]
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 1] [cons] treestep sumtree')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
6
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[23 [2 [8] [9]] [3] [4 []]] [pop 0] [pop 1] [sum +] treestep') # Combine replace and sum into one function.
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
6
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[4 [3 [] [7]]] [pop 0] [pop 1] [sum +] treestep') # Combine replace and sum into one function.
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
3
|
||
|
||
|
||
Redefining the Ordered Binary Tree in terms of ``treestep``.
|
||
------------------------------------------------------------
|
||
|
||
::
|
||
|
||
Tree = [] | [[key value] left right]
|
||
|
||
What kind of functions can we write for this with our ``treestep``?
|
||
|
||
The pattern for processing a non-empty node is:
|
||
|
||
::
|
||
|
||
node N [tree*] [K] map C
|
||
|
||
Plugging in our BTree structure:
|
||
|
||
::
|
||
|
||
[key value] N [left right] [K] map C
|
||
|
||
Traversal
|
||
~~~~~~~~~
|
||
|
||
::
|
||
|
||
[key value] first [left right] [K] map i
|
||
key [value] [left right] [K] map i
|
||
key [left right] [K] map i
|
||
key [lkey rkey ] i
|
||
key lkey rkey
|
||
|
||
This doesn’t quite work:
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[[3 0] [[2 0] [][]] [[9 0] [[5 0] [[4 0] [][]] [[8 0] [[6 0] [] [[7 0] [][]]][]]][]]] ["B"] [first] [i] treestep')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
3 'B' 'B'
|
||
|
||
|
||
Doesn’t work because ``map`` extracts the ``first`` item of whatever its
|
||
mapped function produces. We have to return a list, rather than
|
||
depositing our results directly on the stack.
|
||
|
||
::
|
||
|
||
[key value] N [left right] [K] map C
|
||
|
||
[key value] first [left right] [K] map flatten cons
|
||
key [left right] [K] map flatten cons
|
||
key [[lk] [rk] ] flatten cons
|
||
key [ lk rk ] cons
|
||
[key lk rk ]
|
||
|
||
So:
|
||
|
||
::
|
||
|
||
[] [first] [flatten cons] treestep
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [first] [flatten cons] treestep')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[3 2 9 5 4 8 6 7]
|
||
|
||
|
||
There we go.
|
||
|
||
In-order traversal
|
||
~~~~~~~~~~~~~~~~~~
|
||
|
||
From here:
|
||
|
||
::
|
||
|
||
key [[lk] [rk]] C
|
||
key [[lk] [rk]] i
|
||
key [lk] [rk] roll<
|
||
[lk] [rk] key swons concat
|
||
[lk] [key rk] concat
|
||
[lk key rk]
|
||
|
||
So:
|
||
|
||
::
|
||
|
||
[] [i roll< swons concat] [first] treestep
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [uncons pop] [i roll< swons concat] treestep')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[2 3 4 5 6 7 8 9]
|
||
|
||
|
||
With ``treegrind``?
|
||
-------------------
|
||
|
||
The ``treegrind`` function doesn’t include the ``map`` combinator, so
|
||
the ``[C]`` function must arrange to use some combinator on the quoted
|
||
recursive copy ``[K]``. With this function, the pattern for processing a
|
||
non-empty node is:
|
||
|
||
::
|
||
|
||
node N [tree*] [K] C
|
||
|
||
Plugging in our BTree structure:
|
||
|
||
::
|
||
|
||
[key value] N [left right] [K] C
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[["key" "value"] ["left"] ["right"] ] ["B"] ["N"] ["C"] treegrind')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
['key' 'value'] 'N' [['left'] ['right']] [[not] ['B'] [uncons ['N'] dip] ['C'] genrec] 'C'
|
||
|
||
|
||
``treegrind`` with ``step``
|
||
---------------------------
|
||
|
||
Iteration through the nodes
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [pop] ["N"] [step] treegrind')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[3 0] 'N' [2 0] 'N' [9 0] 'N' [5 0] 'N' [4 0] 'N' [8 0] 'N' [6 0] 'N' [7 0] 'N'
|
||
|
||
|
||
Sum the nodes’ keys.
|
||
|
||
.. code:: ipython2
|
||
|
||
J('0 [[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [pop] [first +] [step] treegrind')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
44
|
||
|
||
|
||
Rebuild the tree using ``map`` (imitating ``treestep``.)
|
||
|
||
.. code:: ipython2
|
||
|
||
J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [[100 +] infra] [map cons] treegrind')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[[103 0] [[102 0] [] []] [[109 0] [[105 0] [[104 0] [] []] [[108 0] [[106 0] [] [[107 0] [] []]] []]] []]]
|
||
|
||
|
||
Do we have the flexibility to reimplement ``Tree-get``?
|
||
-------------------------------------------------------
|
||
|
||
I think we do:
|
||
|
||
::
|
||
|
||
[B] [N] [C] treegrind
|
||
|
||
We’ll start by saying that the base-case (the key is not in the tree) is
|
||
user defined, and the per-node function is just the query key literal:
|
||
|
||
::
|
||
|
||
[B] [query_key] [C] treegrind
|
||
|
||
This means we just have to define ``C`` from:
|
||
|
||
::
|
||
|
||
[key value] query_key [left right] [K] C
|
||
|
||
Let’s try ``cmp``:
|
||
|
||
::
|
||
|
||
C == P [T>] [E] [T<] cmp
|
||
|
||
[key value] query_key [left right] [K] P [T>] [E] [T<] cmp
|
||
|
||
The predicate ``P``
|
||
~~~~~~~~~~~~~~~~~~~
|
||
|
||
Seems pretty easy (we must preserve the value in case the keys are
|
||
equal):
|
||
|
||
::
|
||
|
||
[key value] query_key [left right] [K] P
|
||
[key value] query_key [left right] [K] roll<
|
||
[key value] [left right] [K] query_key [roll< uncons swap] dip
|
||
|
||
[key value] [left right] [K] roll< uncons swap query_key
|
||
[left right] [K] [key value] uncons swap query_key
|
||
[left right] [K] key [value] swap query_key
|
||
[left right] [K] [value] key query_key
|
||
|
||
P == roll< [roll< uncons swap] dip
|
||
|
||
(Possibly with a swap at the end? Or just swap ``T<`` and ``T>``.)
|
||
|
||
So now:
|
||
|
||
::
|
||
|
||
[left right] [K] [value] key query_key [T>] [E] [T<] cmp
|
||
|
||
Becomes one of these three:
|
||
|
||
::
|
||
|
||
[left right] [K] [value] T>
|
||
[left right] [K] [value] E
|
||
[left right] [K] [value] T<
|
||
|
||
``E``
|
||
~~~~~
|
||
|
||
Easy.
|
||
|
||
::
|
||
|
||
E == roll> popop first
|
||
|
||
``T<`` and ``T>``
|
||
~~~~~~~~~~~~~~~~~
|
||
|
||
::
|
||
|
||
T< == pop [first] dip i
|
||
T> == pop [second] dip i
|
||
|
||
Putting it together
|
||
-------------------
|
||
|
||
::
|
||
|
||
T> == pop [first] dip i
|
||
T< == pop [second] dip i
|
||
E == roll> popop first
|
||
P == roll< [roll< uncons swap] dip
|
||
|
||
Tree-get == [P [T>] [E] [T<] cmp] treegrind
|
||
|
||
To me, that seems simpler than the ``genrec`` version.
|
||
|
||
.. code:: ipython2
|
||
|
||
DefinitionWrapper.add_definitions('''
|
||
|
||
T> == pop [first] dip i
|
||
T< == pop [second] dip i
|
||
E == roll> popop first
|
||
P == roll< [roll< uncons swap] dip
|
||
|
||
Tree-get == [P [T>] [E] [T<] cmp] treegrind
|
||
|
||
''', D)
|
||
|
||
.. code:: ipython2
|
||
|
||
J('''\
|
||
|
||
[[3 13] [[2 12] [] []] [[9 19] [[5 15] [[4 14] [] []] [[8 18] [[6 16] [] [[7 17] [] []]] []]] []]]
|
||
|
||
[] [5] Tree-get
|
||
|
||
''')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
15
|
||
|
||
|
||
.. code:: ipython2
|
||
|
||
J('''\
|
||
|
||
[[3 13] [[2 12] [] []] [[9 19] [[5 15] [[4 14] [] []] [[8 18] [[6 16] [] [[7 17] [] []]] []]] []]]
|
||
|
||
[pop "nope"] [25] Tree-get
|
||
|
||
''')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
'nope'
|
||
|