Thun/docs/Compiling_Joy.rst

593 lines
13 KiB
ReStructuredText

.. code:: ipython3
from notebook_preamble import D, J, V, define
Compiling Joy
=============
Given a Joy program like:
::
sqr == dup mul
.. code:: ipython3
V('23 sqr')
.. parsed-literal::
• 23 sqr
23 • sqr
23 • dup mul
23 23 • mul
529 •
How would we go about compiling this code (to Python for now)?
Naive Call Chaining
-------------------
The simplest thing would be to compose the functions from the library:
.. code:: ipython3
dup, mul = D['dup'], D['mul']
.. code:: ipython3
def sqr(stack, expression, dictionary):
return mul(*dup(stack, expression, dictionary))
.. code:: ipython3
old_sqr = D['sqr']
D['sqr'] = sqr
.. code:: ipython3
V('23 sqr')
.. parsed-literal::
• 23 sqr
23 • sqr
529 •
It's simple to write a function to emit this kind of crude "compiled"
code.
.. code:: ipython3
def compile_joy(name, expression):
term, expression = expression
code = term +'(stack, expression, dictionary)'
format_ = '%s(*%s)'
while expression:
term, expression = expression
code = format_ % (term, code)
return '''\
def %s(stack, expression, dictionary):
return %s
''' % (name, code)
def compile_joy_definition(defi):
return compile_joy(defi.name, defi.body)
.. code:: ipython3
print(compile_joy_definition(old_sqr))
.. parsed-literal::
def sqr(stack, expression, dictionary):
return mul(*dup(stack, expression, dictionary))
But what about literals?
::
quoted == [unit] dip
.. code:: ipython3
unit, dip = D['unit'], D['dip']
.. code:: ipython3
# print compile_joy_definition(D['quoted'])
# raises
# TypeError: can only concatenate tuple (not "str") to tuple
For a program like ``foo == bar baz 23 99 baq lerp barp`` we would want
something like:
.. code:: ipython3
def foo(stack, expression, dictionary):
stack, expression, dictionary = baz(*bar(stack, expression, dictionary))
return barp(*lerp(*baq((99, (23, stack)), expression, dictionary)))
You have to have a little discontinuity when going from a symbol to a
literal, because you have to pick out the stack from the arguments to
push the literal(s) onto it before you continue chaining function calls.
Compiling Yin Functions
-----------------------
Call-chaining results in code that does too much work. For functions
that operate on stacks and only rearrange values, what I like to call
"Yin Functions", we can do better.
We can infer the stack effects of these functions (or "expressions" or
"programs") automatically, and the stack effects completely define the
semantics of the functions, so we can directly write out a two-line
Python function for them. This is already implemented in the
``joy.utils.types.compile_()`` function.
.. code:: ipython3
from joy.utils.types import compile_, doc_from_stack_effect, infer_string
from joy.library import SimpleFunctionWrapper
::
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-14-d5ef3c7560be> in <module>
----> 1 from joy.utils.types import compile_, doc_from_stack_effect, infer_string
2 from joy.library import SimpleFunctionWrapper
ModuleNotFoundError: No module named 'joy.utils.types'
.. code:: ipython3
stack_effects = infer_string('tuck over dup')
Yin functions have only a single stack effect, they do not branch or
loop.
.. code:: ipython3
for fi, fo in stack_effects:
print doc_from_stack_effect(fi, fo)
.. code:: ipython3
source = compile_('foo', stack_effects[0])
All Yin functions can be described in Python as a tuple-unpacking (or
"-destructuring") of the stack datastructure followed by building up the
new stack structure.
.. code:: ipython3
print source
.. code:: ipython3
exec compile(source, '__main__', 'single')
D['foo'] = SimpleFunctionWrapper(foo)
::
File "<ipython-input-9-1a7e90bf2d7b>", line 1
exec compile(source, '__main__', 'single')
^
SyntaxError: invalid syntax
.. code:: ipython3
V('23 18 foo')
Compiling from Stack Effects
----------------------------
There are times when you're deriving a Joy program when you have a stack
effect for a Yin function and you need to define it. For example, in the
Ordered Binary Trees notebook there is a point where we must derive a
function ``Ee``:
::
[key old_value left right] new_value key [Tree-add] Ee
------------------------------------------------------------
[key new_value left right]
While it is not hard to come up with this function manually, there is no
necessity. This function can be defined (in Python) directly from its
stack effect:
::
[a b c d] e a [f] Ee
--------------------------
[a e c d]
(I haven't yet implemented a simple interface for this yet. What follow
is an exploration of how to do it.)
.. code:: ipython3
from joy.parser import text_to_expression
.. code:: ipython3
Ein = '[a b c d] e a [f]' # The terms should be reversed here but I don't realize that until later.
Eout = '[a e c d]'
E = '[%s] [%s]' % (Ein, Eout)
print E
.. code:: ipython3
(fi, (fo, _)) = text_to_expression(E)
.. code:: ipython3
fi, fo
.. code:: ipython3
Ein = '[a1 a2 a3 a4] a5 a6 a7'
Eout = '[a1 a5 a3 a4]'
E = '[%s] [%s]' % (Ein, Eout)
print E
.. code:: ipython3
(fi, (fo, _)) = text_to_expression(E)
.. code:: ipython3
fi, fo
.. code:: ipython3
def type_vars():
from joy.library import a1, a2, a3, a4, a5, a6, a7, s0, s1
return locals()
tv = type_vars()
tv
.. code:: ipython3
from joy.utils.types import reify
.. code:: ipython3
stack_effect = reify(tv, (fi, fo))
print doc_from_stack_effect(*stack_effect)
.. code:: ipython3
print stack_effect
Almost, but what we really want is something like this:
.. code:: ipython3
stack_effect = eval('(((a1, (a2, (a3, (a4, s1)))), (a5, (a6, (a7, s0)))), ((a1, (a5, (a3, (a4, s1)))), s0))', tv)
Note the change of ``()`` to ``JoyStackType`` type variables.
.. code:: ipython3
print doc_from_stack_effect(*stack_effect)
Now we can omit ``a3`` and ``a4`` if we like:
.. code:: ipython3
stack_effect = eval('(((a1, (a2, s1)), (a5, (a6, (a7, s0)))), ((a1, (a5, s1)), s0))', tv)
The ``right`` and ``left`` parts of the ordered binary tree node are
subsumed in the tail of the node's stack/list.
.. code:: ipython3
print doc_from_stack_effect(*stack_effect)
.. code:: ipython3
source = compile_('Ee', stack_effect)
print source
Oops! The input stack is backwards...
.. code:: ipython3
stack_effect = eval('((a7, (a6, (a5, ((a1, (a2, s1)), s0)))), ((a1, (a5, s1)), s0))', tv)
.. code:: ipython3
print doc_from_stack_effect(*stack_effect)
.. code:: ipython3
source = compile_('Ee', stack_effect)
print source
Compare:
::
[key old_value left right] new_value key [Tree-add] Ee
------------------------------------------------------------
[key new_value left right]
.. code:: ipython3
eval(compile(source, '__main__', 'single'))
D['Ee'] = SimpleFunctionWrapper(Ee)
.. code:: ipython3
V('[a b c d] 1 2 [f] Ee')
Working with Yang Functions
---------------------------
Consider the compiled code of ``dup``:
.. code:: ipython3
def dup(stack):
(a1, s23) = stack
return (a1, (a1, s23))
To compile ``sqr == dup mul`` we can compute the stack effect:
.. code:: ipython3
stack_effects = infer_string('dup mul')
for fi, fo in stack_effects:
print doc_from_stack_effect(fi, fo)
Then we would want something like this:
.. code:: ipython3
def sqr(stack):
(n1, s23) = stack
n2 = mul(n1, n1)
return (n2, s23)
How about...
.. code:: ipython3
stack_effects = infer_string('mul mul sub')
for fi, fo in stack_effects:
print doc_from_stack_effect(fi, fo)
.. code:: ipython3
def foo(stack):
(n1, (n2, (n3, (n4, s23)))) = stack
n5 = mul(n1, n2)
n6 = mul(n5, n3)
n7 = sub(n6, n4)
return (n7, s23)
# or
def foo(stack):
(n1, (n2, (n3, (n4, s23)))) = stack
n5 = sub(mul(mul(n1, n2), n3), n4)
return (n5, s23)
.. code:: ipython3
stack_effects = infer_string('tuck')
for fi, fo in stack_effects:
print doc_from_stack_effect(fi, fo)
Compiling Yin~Yang Functions
----------------------------
First, we need a source of Python identifiers. I'm going to reuse
``Symbol`` class for this.
.. code:: ipython3
from joy.parser import Symbol
.. code:: ipython3
def _names():
n = 0
while True:
yield Symbol('a' + str(n))
n += 1
names = _names().next
Now we need an object that represents a Yang function that accepts two
args and return one result (we'll implement other kinds a little later.)
.. code:: ipython3
class Foo(object):
def __init__(self, name):
self.name = name
def __call__(self, stack, expression, code):
in1, (in0, stack) = stack
out = names()
code.append(('call', out, self.name, (in0, in1)))
return (out, stack), expression, code
A crude "interpreter" that translates expressions of args and Yin and
Yang functions into a kind of simple dataflow graph.
.. code:: ipython3
def I(stack, expression, code):
while expression:
term, expression = expression
if callable(term):
stack, expression, _ = term(stack, expression, code)
else:
stack = term, stack
code.append(('pop', term))
s = []
while stack:
term, stack = stack
s.insert(0, term)
if s:
code.append(('push',) + tuple(s))
return code
Something to convert the graph into Python code.
.. code:: ipython3
strtup = lambda a, b: '(%s, %s)' % (b, a)
strstk = lambda rest: reduce(strtup, rest, 'stack')
def code_gen(code):
coalesce_pops(code)
lines = []
for t in code:
tag, rest = t[0], t[1:]
if tag == 'pop':
lines.append(strstk(rest) + ' = stack')
elif tag == 'push':
lines.append('stack = ' + strstk(rest))
elif tag == 'call':
#out, name, in_ = rest
lines.append('%s = %s%s' % rest)
else:
raise ValueError(tag)
return '\n'.join(' ' + line for line in lines)
def coalesce_pops(code):
index = [i for i, t in enumerate(code) if t[0] == 'pop']
for start, end in yield_groups(index):
code[start:end] = \
[tuple(['pop'] + [t for _, t in code[start:end][::-1]])]
def yield_groups(index):
'''
Yield slice indices for each group of contiguous ints in the
index list.
'''
k = 0
for i, (a, b) in enumerate(zip(index, index[1:])):
if b - a > 1:
if k != i:
yield index[k], index[i] + 1
k = i + 1
if k < len(index):
yield index[k], index[-1] + 1
def compile_yinyang(name, expression):
return '''\
def %s(stack):
%s
return stack
''' % (name, code_gen(I((), expression, [])))
A few functions to try it with...
.. code:: ipython3
mul = Foo('mul')
sub = Foo('sub')
.. code:: ipython3
def import_yin():
from joy.utils.generated_library import *
return locals()
yin_dict = {name: SimpleFunctionWrapper(func) for name, func in import_yin().iteritems()}
yin_dict
dup = yin_dict['dup']
#def dup(stack, expression, code):
# n, stack = stack
# return (n, (n, stack)), expression
... and there we are.
.. code:: ipython3
print compile_yinyang('mul_', (names(), (names(), (mul, ()))))
.. code:: ipython3
e = (names(), (dup, (mul, ())))
print compile_yinyang('sqr', e)
.. code:: ipython3
e = (names(), (dup, (names(), (sub, (mul, ())))))
print compile_yinyang('foo', e)
.. code:: ipython3
e = (names(), (names(), (mul, (dup, (sub, (dup, ()))))))
print compile_yinyang('bar', e)
.. code:: ipython3
e = (names(), (dup, (dup, (mul, (dup, (mul, (mul, ())))))))
print compile_yinyang('to_the_fifth_power', e)