Thun/docs/sphinx_docs/_build/html/notebooks/Newton-Raphson.html

298 lines
24 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Newtons method &#8212; Thun 0.4.1 documentation</title>
<link rel="stylesheet" href="../_static/alabaster.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<script type="text/javascript" src="../_static/documentation_options.js"></script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Traversing Datastructures with Zippers" href="Zipper.html" />
<link rel="prev" title="Using x to Generate Values" href="Generator_Programs.html" />
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="newtons-method">
<h1><a class="reference external" href="https://en.wikipedia.org/wiki/Newton%27s_method">Newtons method</a><a class="headerlink" href="#newtons-method" title="Permalink to this headline"></a></h1>
<p>Lets use the Newton-Raphson method for finding the root of an equation
to write a function that can compute the square root of a number.</p>
<p>Cf. <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
Hughes</a></p>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">notebook_preamble</span> <span class="k">import</span> <span class="n">J</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">define</span>
</pre></div>
</div>
<div class="section" id="a-generator-for-approximations">
<h2>A Generator for Approximations<a class="headerlink" href="#a-generator-for-approximations" title="Permalink to this headline"></a></h2>
<p>To make a generator that generates successive approximations lets start
by assuming an initial approximation and then derive the function that
computes the next approximation:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="n">F</span>
<span class="o">---------</span>
<span class="n">a</span><span class="s1">&#39;</span>
</pre></div>
</div>
<div class="section" id="a-function-to-compute-the-next-approximation">
<h3>A Function to Compute the Next Approximation<a class="headerlink" href="#a-function-to-compute-the-next-approximation" title="Permalink to this headline"></a></h3>
<p>This is the equation for computing the next approximate value of the
square root:</p>
<p><span class="math notranslate nohighlight">\(a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}\)</span></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">a</span> <span class="n">n</span> <span class="n">a</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">a</span> <span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="mi">2</span> <span class="o">/</span>
<span class="p">(</span><span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
</pre></div>
</div>
<p>The function we want has the argument <code class="docutils literal notranslate"><span class="pre">n</span></code> in it:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">F</span> <span class="o">==</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
</pre></div>
</div>
</div>
<div class="section" id="make-it-into-a-generator">
<h3>Make it into a Generator<a class="headerlink" href="#make-it-into-a-generator" title="Permalink to this headline"></a></h3>
<p>Our generator would be created by:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">dup</span> <span class="n">F</span><span class="p">]</span> <span class="n">make_generator</span>
</pre></div>
</div>
<p>With n as part of the function F, but n is the input to the sqrt
function were writing. If we let 1 be the initial approximation:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">1</span> <span class="n">n</span> <span class="mi">1</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="mi">1</span> <span class="n">n</span><span class="o">/</span><span class="mi">1</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="mi">1</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">n</span><span class="o">+</span><span class="mi">1</span> <span class="mi">2</span> <span class="o">/</span>
<span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
</pre></div>
</div>
<p>The generator can be written as:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">23</span> <span class="mi">1</span> <span class="n">swap</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
<span class="mi">1</span> <span class="mi">23</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
<span class="mi">1</span> <span class="p">[</span><span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
<span class="mi">1</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">make_generator</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">&#39;gsra == 1 swap [over / + 2 /] cons [dup] swoncat make_generator&#39;</span><span class="p">)</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">&#39;23 gsra&#39;</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="mi">1</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">codireco</span><span class="p">]</span>
</pre></div>
</div>
<p>Lets drive the generator a few time (with the <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator) and
square the approximation to see how well it works…</p>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">&#39;23 gsra 6 [x popd] times first sqr&#39;</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">23.0000000001585</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="finding-consecutive-approximations-within-a-tolerance">
<h2>Finding Consecutive Approximations within a Tolerance<a class="headerlink" href="#finding-consecutive-approximations-within-a-tolerance" title="Permalink to this headline"></a></h2>
<p>From <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
Hughes</a>:</p>
<blockquote>
<div>The remainder of a square root finder is a function <em>within</em>, which
takes a tolerance and a list of approximations and looks down the
list for two successive approximations that differ by no more than
the given tolerance.</div></blockquote>
<p>(And note that by “list” he means a lazily-evaluated list.)</p>
<p>Using the <em>output</em> <code class="docutils literal notranslate"><span class="pre">[a</span> <span class="pre">G]</span></code> of the above generator for square root
approximations, and further assuming that the first term a has been
generated already and epsilon ε is handy on the stack…</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="n">b</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&gt;</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
</pre></div>
</div>
<div class="section" id="predicate">
<h3>Predicate<a class="headerlink" href="#predicate" title="Permalink to this headline"></a></h3>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span><span class="p">]</span> <span class="n">dip</span> <span class="o">&lt;=</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="n">a</span><span class="o">-</span><span class="n">b</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span><span class="o">&lt;=</span><span class="n">ε</span><span class="p">)</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">&#39;_within_P == [first - abs] dip &lt;=&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="base-case">
<h3>Base-Case<a class="headerlink" href="#base-case" title="Permalink to this headline"></a></h3>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">roll</span><span class="o">&lt;</span> <span class="n">popop</span> <span class="n">first</span>
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">a</span> <span class="n">popop</span> <span class="n">first</span>
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span>
<span class="n">b</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">&#39;_within_B == roll&lt; popop first&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="recur">
<h3>Recur<a class="headerlink" href="#recur" title="Permalink to this headline"></a></h3>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
</pre></div>
</div>
<ol class="arabic simple">
<li>Discard a.</li>
<li>Use <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator to generate next term from <code class="docutils literal notranslate"><span class="pre">G</span></code>.</li>
<li>Run <code class="docutils literal notranslate"><span class="pre">within</span></code> with <code class="docutils literal notranslate"><span class="pre">i</span></code> (it is a <code class="docutils literal notranslate"><span class="pre">primrec</span></code> function.)</li>
</ol>
<p>Pretty straightforward:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">popd</span> <span class="n">x</span><span class="p">]</span> <span class="n">dip</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">popd</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">&#39;_within_R == [popd x] dip&#39;</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="setting-up">
<h3>Setting up<a class="headerlink" href="#setting-up" title="Permalink to this headline"></a></h3>
<p>The recursive function we have defined so far needs a slight preamble:
<code class="docutils literal notranslate"><span class="pre">x</span></code> to prime the generator and the epsilon value to use:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="n">a</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="o">...</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="o">...</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">define</span><span class="p">(</span><span class="s1">&#39;within == x 0.000000001 [_within_P] [_within_B] [_within_R] primrec&#39;</span><span class="p">)</span>
<span class="n">define</span><span class="p">(</span><span class="s1">&#39;sqrt == gsra within&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>Try it out…</p>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">&#39;36 sqrt&#39;</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">6.0</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">J</span><span class="p">(</span><span class="s1">&#39;23 sqrt&#39;</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span>
</pre></div>
</div>
<p>Check it.</p>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span><span class="o">**</span><span class="mi">2</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">22.999999999999996</span>
</pre></div>
</div>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">math</span> <span class="k">import</span> <span class="n">sqrt</span>
<span class="n">sqrt</span><span class="p">(</span><span class="mi">23</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="../index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Newtons method</a><ul>
<li><a class="reference internal" href="#a-generator-for-approximations">A Generator for Approximations</a><ul>
<li><a class="reference internal" href="#a-function-to-compute-the-next-approximation">A Function to Compute the Next Approximation</a></li>
<li><a class="reference internal" href="#make-it-into-a-generator">Make it into a Generator</a></li>
</ul>
</li>
<li><a class="reference internal" href="#finding-consecutive-approximations-within-a-tolerance">Finding Consecutive Approximations within a Tolerance</a><ul>
<li><a class="reference internal" href="#predicate">Predicate</a></li>
<li><a class="reference internal" href="#base-case">Base-Case</a></li>
<li><a class="reference internal" href="#recur">Recur</a></li>
<li><a class="reference internal" href="#setting-up">Setting up</a></li>
</ul>
</li>
</ul>
</li>
</ul>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="../index.html">Documentation overview</a><ul>
<li><a href="index.html">Essays about Programming in Joy</a><ul>
<li>Previous: <a href="Generator_Programs.html" title="previous chapter">Using <code class="docutils literal notranslate"><span class="pre">x</span></code> to Generate Values</a></li>
<li>Next: <a href="Zipper.html" title="next chapter">Traversing Datastructures with Zippers</a></li>
</ul></li>
</ul></li>
</ul>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../_sources/notebooks/Newton-Raphson.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer" role="contentinfo">
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">
<img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" />
</a>
<br />
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Thun Documentation</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://joypy.osdn.io/" property="cc:attributionName" rel="cc:attributionURL">Simon Forman</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://osdn.net/projects/joypy/" rel="dct:source">https://osdn.net/projects/joypy/</a>.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.3.
</div>
</body>
</html>