Thun/docs/Quadratic.rst

159 lines
6.3 KiB
ReStructuredText

.. code:: ipython2
from notebook_preamble import J, V, define
`Quadratic formula <https://en.wikipedia.org/wiki/Quadratic_formula>`__
=======================================================================
Cf.
`jp-quadratic.html <http://www.kevinalbrecht.com/code/joy-mirror/jp-quadratic.html>`__
::
-b ± sqrt(b^2 - 4 * a * c)
--------------------------------
2 * a
:math:`\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}`
Write a straightforward program with variable names.
----------------------------------------------------
This math translates to Joy code in a straightforward manner. We are
going to use named variables to keep track of the arguments, then write
a definition without them.
``-b``
~~~~~~
::
b neg
``sqrt(b^2 - 4 * a * c)``
~~~~~~~~~~~~~~~~~~~~~~~~~
::
b sqr 4 a c * * - sqrt
``/2a``
~~~~~~~
::
a 2 * /
``±``
~~~~~
There is a function ``pm`` that accepts two values on the stack and
replaces them with their sum and difference.
::
pm == [+] [-] cleave popdd
Putting Them Together
~~~~~~~~~~~~~~~~~~~~~
::
b neg b sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
We use ``app2`` to compute both roots by using a quoted program
``[2a /]`` built with ``cons``.
Derive a definition.
--------------------
Working backwards we use ``dip`` and ``dipd`` to extract the code from
the variables:
::
b neg b sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
b [neg] dupdip sqr 4 a c * * - sqrt pm a 2 * [/] cons app2
b a c [[neg] dupdip sqr 4] dipd * * - sqrt pm a 2 * [/] cons app2
b a c a [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2
b a c over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2
The three arguments are to the left, so we can "chop off" everything to
the right and say it's the definition of the ``quadratic`` function:
.. code:: ipython2
define('quadratic == over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2')
Let's try it out:
.. code:: ipython2
J('3 1 1 quadratic')
.. parsed-literal::
-0.3819660112501051 -2.618033988749895
If you look at the Joy evaluation trace you can see that the first few
lines are the ``dip`` and ``dipd`` combinators building the main program
by incorporating the values on the stack. Then that program runs and you
get the results. This is pretty typical of Joy code.
.. code:: ipython2
V('-5 1 4 quadratic')
.. parsed-literal::
. -5 1 4 quadratic
-5 . 1 4 quadratic
-5 1 . 4 quadratic
-5 1 4 . quadratic
-5 1 4 . over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2
-5 1 4 1 . [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2
-5 1 4 1 [[[neg] dupdip sqr 4] dipd * * - sqrt pm] . dip 2 * [/] cons app2
-5 1 4 . [[neg] dupdip sqr 4] dipd * * - sqrt pm 1 2 * [/] cons app2
-5 1 4 [[neg] dupdip sqr 4] . dipd * * - sqrt pm 1 2 * [/] cons app2
-5 . [neg] dupdip sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
-5 [neg] . dupdip sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
-5 . neg -5 sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
5 . -5 sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
5 -5 . sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
5 -5 . dup mul 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
5 -5 -5 . mul 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
5 25 . 4 1 4 * * - sqrt pm 1 2 * [/] cons app2
5 25 4 . 1 4 * * - sqrt pm 1 2 * [/] cons app2
5 25 4 1 . 4 * * - sqrt pm 1 2 * [/] cons app2
5 25 4 1 4 . * * - sqrt pm 1 2 * [/] cons app2
5 25 4 4 . * - sqrt pm 1 2 * [/] cons app2
5 25 16 . - sqrt pm 1 2 * [/] cons app2
5 9 . sqrt pm 1 2 * [/] cons app2
5 3.0 . pm 1 2 * [/] cons app2
8.0 2.0 . 1 2 * [/] cons app2
8.0 2.0 1 . 2 * [/] cons app2
8.0 2.0 1 2 . * [/] cons app2
8.0 2.0 2 . [/] cons app2
8.0 2.0 2 [/] . cons app2
8.0 2.0 [2 /] . app2
[8.0] [2 /] . infra first [2.0] [2 /] infra first
8.0 . 2 / [] swaack first [2.0] [2 /] infra first
8.0 2 . / [] swaack first [2.0] [2 /] infra first
4.0 . [] swaack first [2.0] [2 /] infra first
4.0 [] . swaack first [2.0] [2 /] infra first
[4.0] . first [2.0] [2 /] infra first
4.0 . [2.0] [2 /] infra first
4.0 [2.0] . [2 /] infra first
4.0 [2.0] [2 /] . infra first
2.0 . 2 / [4.0] swaack first
2.0 2 . / [4.0] swaack first
1.0 . [4.0] swaack first
1.0 [4.0] . swaack first
4.0 [1.0] . first
4.0 1.0 .