Thun/thun/thun.pl

336 lines
9.8 KiB
Prolog

%
% Copyright © 2018 Simon Forman
%
% This file is part of Thun
%
% Thun is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Thun is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Thun. If not see <http://www.gnu.org/licenses/>.
%
:- use_module(library(clpfd)).
:- use_module(library(dcg/basics)).
:- dynamic func/3.
:- dynamic def/2.
/*
To handle comparision operators the possibility of exceptions due to insufficiently instantiated
arguments must be handled. First try to make the comparison and set the result to a Boolean atom.
If an exception happens just leave the comparison expression as the result and some other function
or combinator will deal with it. Example:
func(>, [A, B|S], [C|S]) :- catch(
(B > A -> C=true ; C=false),
_,
C=(B>A) % in case of error.
).
To save on conceptual overhead I've defined a term_expansion/2 that sets up the func/3 for each op.
*/
term_expansion(comparison_operator(X), (func(X, [A, B|S], [C|S]) :-
F =.. [X, B, A], catch((F -> C=true ; C=false), _, C=F))).
% I don't use Prolog-compatible op symbols in all cases.
term_expansion(comparison_operator(X, Y), (func(X, [A, B|S], [C|S]) :-
F =.. [Y, B, A], catch((F -> C=true ; C=false), _, C=F))).
% Likewise for math operators, try to evaluate, otherwise use the symbolic form.
term_expansion(math_operator(X), (func(X, [A, B|S], [C|S]) :-
F =.. [X, B, A], catch(C is F, _, C=F))).
term_expansion(math_operator(X, Y), (func(X, [A, B|S], [C|S]) :-
F =.. [Y, B, A], catch(C is F, _, C=F))).
/*
An entry point.
*/
joy(InputString, StackIn, StackOut) :-
phrase(joy_parse(Expression), InputString), !,
thun(Expression, StackIn, StackOut).
/*
Parser
joy :== number | '[' joy* ']' | atom
*/
joy_parse([T|J]) --> blanks, joy_term(T), blanks, joy_parse(J).
joy_parse([]) --> [].
joy_term(N) --> number(N), !.
joy_term(J) --> "[", !, joy_parse(J), "]".
joy_term(C) --> symbol(C).
symbol(C) --> chars(Chars), !, {Chars \= [61, 61], atom_string(C, Chars)}.
chars([Ch|Rest]) --> char(Ch), chars(Rest).
chars([Ch]) --> char(Ch).
char(Ch) --> [Ch], {Ch \== 91, Ch \== 93, code_type(Ch, graph)}.
/*
Interpreter
thun(Expression, InputStack, OutputStack)
*/
thun([], S, S).
thun( [Lit|E], Si, So) :- literal(Lit), !, thun(E, [Lit|Si], So).
thun( [Def|E], Si, So) :- def(Def, Body), !, append(Body, E, Eo), thun(Eo, Si, So).
thun( [Func|E], Si, So) :- func(Func, Si, S), thun(E, S, So).
thun([Combo|E], Si, So) :- combo(Combo, Si, S, E, Eo), thun(Eo, S, So).
% Some error handling.
thun([Unknown|E], Si, So) :-
damned_thing(Unknown),
write("wtf? "),
writeln(Unknown),
So = [[Unknown|E]|Si].
damned_thing(It) :-
\+ literal(It),
\+ def(It, _),
\+ func(It, _, _),
\+ combo(It, _, _, _, _).
/*
Literals
*/
literal(V) :- var(V).
literal(I) :- number(I).
literal([]).
literal([_|_]).
literal(true).
literal(false).
% Symbolic math expressions are literals.
literal(_+_).
literal(_-_).
literal(_*_).
literal(_/_).
/*
Functions
*/
func(cons, [A, B|S], [[B|A]|S]).
func(swap, [A, B|S], [B, A|S]).
func(dup, [A|S], [A, A|S]).
func(pop, [_|S], S ).
% Symbolic math. Compute the answer, or derivative, or whatever, later.
math_operator(+).
math_operator(-).
math_operator(*).
math_operator(/).
math_operator(mod).
% Attempt to calculate the value of a symbolic math expression.
func(calc, [A|S], [B|S]) :- B is A.
func(sqrt, [A|S], [sqrt(A)|S]).
func(concat, [A, B|S], [C|S]) :- append(B, A, C).
func(flatten, [A|S], [B|S]) :- flatten(A, B).
func(swaack, [R|S], [S|R]).
func(stack, S , [S|S]).
func(clear, _ , []).
func(first, [[X|_]|S], [X|S]).
func(rest, [[_|X]|S], [X|S]).
func(unit, [X|S], [[X]|S]).
func(rolldown, [A, B, C|S], [B, C, A|S]).
func(dupd, [A, B|S], [A, B, B|S]).
func(over, [A, B|S], [B, A, B|S]).
func(tuck, [A, B|S], [A, B, A|S]).
func(rollup, Si, So) :- func(rolldown, So, Si).
func(uncons, Si, So) :- func(cons, So, Si).
func(bool, [ 0|S], [false|S]) :- !.
func(bool, [ 0.0|S], [false|S]) :- !.
func(bool, [ []|S], [false|S]) :- !.
func(bool, [ ""|S], [false|S]) :- !.
func(bool, [false|S], [false|S]) :- !.
func(bool, [_|S], [true|S]).
comparison_operator(>).
comparison_operator(<).
comparison_operator(>=).
comparison_operator(<=, =<).
comparison_operator(=, =:=).
comparison_operator(<>, =\=).
/*
Definitions
*/
joy_def(def(Def, Body)) --> symbol(Def), blanks, "==", joy_parse(Body).
joy_defs --> blanks, joy_def(Def), {assert_def(Def)}, blanks, joy_defs.
joy_defs --> [].
assert_defs(DefsFile) :-
read_file_to_codes(DefsFile, Codes, []),
phrase(joy_defs, Codes).
assert_def(def(Def, Body)) :-
retractall(def(Def, _)),
assertz(def(Def, Body)).
:- assert_defs("defs.txt").
/*
Combinators
*/
combo(i, [P|S], S, Ei, Eo) :- append(P, Ei, Eo).
combo(dip, [P, X|S], S, Ei, Eo) :- append(P, [X|Ei], Eo).
combo(dipd, [P, X, Y|S], S, Ei, Eo) :- append(P, [Y, X|Ei], Eo).
combo(dupdip, [P, X|S], [X|S], Ei, Eo) :- append(P, [X|Ei], Eo).
combo(branch, [T, _, true|S], S, Ei, Eo) :- append(T, Ei, Eo).
combo(branch, [_, F, false|S], S, Ei, Eo) :- append(F, Ei, Eo).
combo(branch, [T, F, Expr|S], S, Ei, Eo) :-
\+ Expr = true, \+ Expr = false,
catch( % Try Expr and do one or the other,
(Expr -> append(T, Ei, Eo) ; append(F, Ei, Eo)),
_, % If Expr don't grok, try both branches.
(append(T, Ei, Eo) ; append(F, Ei, Eo))
).
combo(loop, [_, false|S], S, E, E ).
combo(loop, [B, true|S], S, Ei, Eo) :- append(B, [B, loop|Ei], Eo).
combo(step, [_, []|S], S, E, E ).
combo(step, [P, [X]|S], [X|S], Ei, Eo) :- !, append(P, Ei, Eo).
combo(step, [P, [X|Z]|S], [X|S], Ei, Eo) :- append(P, [Z, P, step|Ei], Eo).
combo(times, [_, 0|S], S, E, E ).
combo(times, [P, 1|S], S, Ei, Eo) :- append(P, Ei, Eo).
combo(times, [P, N|S], S, Ei, Eo) :- N #>= 2, M #= N - 1, append(P, [M, P, times|Ei], Eo).
combo(times, [_, N|S], S, _, _ ) :- N #< 0, fail.
combo(genrec, [R1, R0, Then, If|S],
[ Else, Then, If|S], E, [ifte|E]) :-
Quoted = [If, Then, R0, R1, genrec],
append(R0, [Quoted|R1], Else).
/*
This is a crude but servicable implementation of map combinator.
Obviously it would be nice to take advantage of the implied parallelism.
Instead the quoted program, stack, and each term in the arg list are
transformed to a simple Joy expression that runs the program on a prepared
stack. These expressions are collected in a list and the whole thing is
evaluated with infra on an empty list, so the result is the mapped list.
The chief advantage of doing it this way (as opposed to using Prolog's map)
is that the whole state remains in the continuation expression.
*/
combo(map, [_, []|S], [[]|S], E, E ) :- !.
combo(map, [P, List|S], [Mapped, []|S], E, [infra|E]) :-
prepare_mapping(P, S, List, Mapped).
% Set up a program for each term in ListIn
%
% [term S] [P] infrst
%
% prepare_mapping(P, S, ListIn, ListOut).
prepare_mapping(P, S, In, Out) :- prepare_mapping(P, S, In, [], Out).
prepare_mapping( _, _, [], Out, Out) :- !.
prepare_mapping( P, S, [T|In], Acc, Out) :-
prepare_mapping(P, S, In, [[T|S], P, infrst|Acc], Out).
/*
Compiler
*/
joy_compile(Name, Expression) :- jcmpl(Name, Expression, Rule), asserta(Rule).
show_joy_compile(Name, Expression) :- jcmpl(Name, Expression, Rule), portray_clause(Rule).
jcmpl(Name, Expression, Rule) :-
call_residue_vars(thun(Expression, Si, So), Term),
copy_term(Term, Term, Gs),
Head =.. [func, Name, Si, So],
rule(Head, Gs, Rule).
rule(Head, [], Head ).
rule(Head, [A|B], Head :- maplist(call, [A|B])).
sjc(Name, InputString) :- phrase(joy_parse(E), InputString), show_joy_compile(Name, E).
% Simple DCGs to expand/contract definitions.
expando, Body --> [Def], {def(Def, Body)}.
contracto, [Def] --> {def(Def, Body)}, Body.
% Apply expando/contracto more than once, and descend into sub-lists.
% The K term is one of expando or contracto, and the J term is used
% on sub-lists, i.e. expando/grow and contracto/shrink.
% BTW, "crbo" and "rebo" are meaningless names, don't break your brain
% trying to figure them out.
rebo(K, J) --> K , rebo(K, J).
rebo(K, J), [E] --> [[H|T]], !, {call(J, [H|T], E)}, rebo(K, J).
rebo(K, J), [A] --> [ A ], !, rebo(K, J).
rebo(_, _) --> [].
crbo(K, J, Ei, Eo) :-
phrase(rebo(K, J), Ei, E), % Apply expando/grow or contracto/shrink...
(Ei=E -> Eo=E ; crbo(K, J, E, Eo)). % ...until a fixed-point is reached.
grow(Ei, Eo) :- crbo(expando, grow, Ei, Eo).
shrink(Ei, Eo) :- crbo(contracto, shrink, Ei, Eo).
/*
?- E=[foo,bar,swap,cons,baz],phrase(shrink, E, ExprOut).
E = [foo, bar, swap, cons, baz],
ExprOut = [foo, bar, swons, baz].
?- E=[foo, bar, swons, baz],phrase(grow, E, ExprOut).
E = [foo, bar, swons, baz],
ExprOut = [foo, bar, swap, cons, baz].
*/
% ... --> [] | [_], ... .
% for the ellipsis operator
% http://swi-prolog.996271.n3.nabble.com/DCG-idioms-td3117.html which references:
% David B. Searls, Investigating the Linguistics of DNA with Definite Clause Grammars. NACLP 1989.
% phrase(expando, ExprIn, ExprOut).
% E=[foo,bar,swap,cons,baz],phrase((...,contracto,...), E, ExprOut).
% E = [foo, bar, swap, cons, baz],
% ExprOut = [swons, baz]