Thun/docs/sphinx_docs/_build/html/notebooks/Newton-Raphson.html

276 lines
26 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Newtons method &#8212; Thun 0.1.1 documentation</title>
<link rel="stylesheet" href="../_static/alabaster.css" type="text/css" />
<link rel="stylesheet" href="../_static/pygments.css" type="text/css" />
<script type="text/javascript" src="../_static/documentation_options.js"></script>
<script type="text/javascript" src="../_static/jquery.js"></script>
<script type="text/javascript" src="../_static/underscore.js"></script>
<script type="text/javascript" src="../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
<link rel="next" title="Quadratic formula" href="Quadratic.html" />
<link rel="prev" title="Treating Trees" href="Trees.html" />
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
</head><body>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="newton-s-method">
<h1><a class="reference external" href="https://en.wikipedia.org/wiki/Newton%27s_method">Newtons method</a><a class="headerlink" href="#newton-s-method" title="Permalink to this headline"></a></h1>
<p>Newton-Raphson for finding the root of an equation.</p>
<div class="code ipython2 highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">notebook_preamble</span> <span class="k">import</span> <span class="n">J</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">define</span>
</pre></div>
</div>
<p>Cf. <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
Hughes</a></p>
<div class="section" id="a-generator-for-approximations">
<h2>A Generator for Approximations<a class="headerlink" href="#a-generator-for-approximations" title="Permalink to this headline"></a></h2>
<p>In <a class="reference internal" href="Generator Programs.html"><span class="doc">Using x to Generate Values</span></a> we derive a function (called <code class="docutils literal notranslate"><span class="pre">make_generator</span></code> in the dictionary) that accepts an initial value and a quoted program and returns a new quoted program that, when driven by the <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator (<a class="reference internal" href="../library.html#joy.library.x" title="joy.library.x"><code class="xref py py-func docutils literal notranslate"><span class="pre">joy.library.x()</span></code></a>), acts like a lazy stream.</p>
<p>To make a generator that generates successive approximations lets start by assuming an initial approximation and then derive the function that computes the next approximation:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="n">F</span>
<span class="o">---------</span>
<span class="n">a</span><span class="s1">&#39;</span>
</pre></div>
</div>
<div class="section" id="a-function-to-compute-the-next-approximation">
<h3>A Function to Compute the Next Approximation<a class="headerlink" href="#a-function-to-compute-the-next-approximation" title="Permalink to this headline"></a></h3>
<p>Looking at the equation again:</p>
<p><span class="math notranslate nohighlight">\(a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}\)</span></p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">a</span> <span class="n">n</span> <span class="n">a</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">a</span> <span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="mi">2</span> <span class="o">/</span>
<span class="p">(</span><span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
</pre></div>
</div>
<p>The function we want has the argument <code class="docutils literal notranslate"><span class="pre">n</span></code> in it:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">F</span> <span class="o">==</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
</pre></div>
</div>
</div>
<div class="section" id="make-it-into-a-generator">
<h3>Make it into a Generator<a class="headerlink" href="#make-it-into-a-generator" title="Permalink to this headline"></a></h3>
<p>Our generator would be created by:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">dup</span> <span class="n">F</span><span class="p">]</span> <span class="n">make_generator</span>
</pre></div>
</div>
<p>With <code class="docutils literal notranslate"><span class="pre">n</span></code> as part of the function <code class="docutils literal notranslate"><span class="pre">F</span></code>, but <code class="docutils literal notranslate"><span class="pre">n</span></code> is the input to the <code class="docutils literal notranslate"><span class="pre">sqrt</span></code> function were writing. If we let 1 be the initial approximation:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">1</span> <span class="n">n</span> <span class="mi">1</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="mi">1</span> <span class="n">n</span><span class="o">/</span><span class="mi">1</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="mi">1</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
<span class="n">n</span><span class="o">+</span><span class="mi">1</span> <span class="mi">2</span> <span class="o">/</span>
<span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
</pre></div>
</div>
<p>The generator can be written as:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">1</span> <span class="n">swap</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
</pre></div>
</div>
<p>Example:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">23</span> <span class="mi">1</span> <span class="n">swap</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
<span class="mi">1</span> <span class="mi">23</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
<span class="mi">1</span> <span class="p">[</span><span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
<span class="mi">1</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">make_generator</span>
<span class="o">.</span>
<span class="o">.</span>
<span class="o">.</span>
<span class="p">[</span><span class="mi">1</span> <span class="n">swap</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">direco</span><span class="p">]</span>
</pre></div>
</div>
</div>
<div class="section" id="a-generator-of-square-root-approximations">
<h3>A Generator of Square Root Approximations<a class="headerlink" href="#a-generator-of-square-root-approximations" title="Permalink to this headline"></a></h3>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">gsra</span> <span class="o">==</span> <span class="mi">1</span> <span class="n">swap</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="finding-consecutive-approximations-within-a-tolerance">
<h2>Finding Consecutive Approximations <code class="docutils literal notranslate"><span class="pre">within</span></code> a Tolerance<a class="headerlink" href="#finding-consecutive-approximations-within-a-tolerance" title="Permalink to this headline"></a></h2>
<blockquote>
<div>The remainder of a square root finder is a function <em>within</em>, which takes a tolerance and a list of approximations and looks down the list for two successive approximations that differ by no more than the given tolerance.</div></blockquote>
<p>From <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
Hughes</a></p>
<p>(And note that by “list” he means a lazily-evaluated list.)</p>
<p>Using the <em>output</em> <code class="docutils literal notranslate"><span class="pre">[a</span> <span class="pre">G]</span></code> of the above <a class="reference internal" href="Generator Programs.html"><span class="doc">generator</span></a> for square root approximations, and further assuming that the first term <code class="docutils literal notranslate"><span class="pre">a</span></code> has been generated already and epsilon <code class="docutils literal notranslate"><span class="pre">ε</span></code> is handy on the stack…</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="n">b</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&gt;</span>
<span class="o">.</span>
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="o">...</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="o">...</span>
<span class="o">.</span>
<span class="o">----------------------</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
</pre></div>
</div>
<div class="section" id="predicate">
<h3>Predicate<a class="headerlink" href="#predicate" title="Permalink to this headline"></a></h3>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span><span class="p">]</span> <span class="n">dip</span> <span class="o">&lt;=</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="n">a</span><span class="o">-</span><span class="n">b</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span> <span class="n">ε</span> <span class="o">&lt;=</span>
<span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span><span class="o">&lt;=</span><span class="n">ε</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">P</span> <span class="o">==</span> <span class="p">[</span><span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span><span class="p">]</span> <span class="n">dip</span> <span class="o">&lt;=</span>
</pre></div>
</div>
</div>
<div class="section" id="base-case">
<h3>Base-Case<a class="headerlink" href="#base-case" title="Permalink to this headline"></a></h3>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">roll</span><span class="o">&lt;</span> <span class="n">popop</span> <span class="n">first</span>
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">a</span> <span class="n">popop</span> <span class="n">first</span>
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span>
<span class="n">b</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">B</span> <span class="o">==</span> <span class="n">roll</span><span class="o">&lt;</span> <span class="n">popop</span> <span class="n">first</span>
</pre></div>
</div>
</div>
<div class="section" id="recur">
<h3>Recur<a class="headerlink" href="#recur" title="Permalink to this headline"></a></h3>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
</pre></div>
</div>
<ol class="arabic simple">
<li>Discard <code class="docutils literal notranslate"><span class="pre">a</span></code>.</li>
<li>Use <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator to generate next term from <code class="docutils literal notranslate"><span class="pre">G</span></code>.</li>
<li>Run <code class="docutils literal notranslate"><span class="pre">within</span></code> with <code class="docutils literal notranslate"><span class="pre">i</span></code> (it is a <code class="docutils literal notranslate"><span class="pre">primrec</span></code> function.)</li>
</ol>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">popd</span> <span class="n">x</span><span class="p">]</span> <span class="n">dip</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">popd</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
</pre></div>
</div>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">R0</span> <span class="o">==</span> <span class="p">[</span><span class="n">popd</span> <span class="n">x</span><span class="p">]</span> <span class="n">dip</span>
</pre></div>
</div>
</div>
<div class="section" id="setting-up">
<h3>Setting up<a class="headerlink" href="#setting-up" title="Permalink to this headline"></a></h3>
<p>The recursive function we have defined so far needs a slight preamble: <code class="docutils literal notranslate"><span class="pre">x</span></code> to prime the generator and the epsilon value to use:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="n">a</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="o">...</span>
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="o">...</span>
</pre></div>
</div>
</div>
<div class="section" id="within">
<h3><code class="docutils literal notranslate"><span class="pre">within</span></code><a class="headerlink" href="#within" title="Permalink to this headline"></a></h3>
<p>Giving us the following definitions:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">_within_P</span> <span class="o">==</span> <span class="p">[</span><span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span><span class="p">]</span> <span class="n">dip</span> <span class="o">&lt;=</span>
<span class="n">_within_B</span> <span class="o">==</span> <span class="n">roll</span><span class="o">&lt;</span> <span class="n">popop</span> <span class="n">first</span>
<span class="n">_within_R</span> <span class="o">==</span> <span class="p">[</span><span class="n">popd</span> <span class="n">x</span><span class="p">]</span> <span class="n">dip</span>
<span class="n">within</span> <span class="o">==</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">_within_P</span><span class="p">]</span> <span class="p">[</span><span class="n">_within_B</span><span class="p">]</span> <span class="p">[</span><span class="n">_within_R</span><span class="p">]</span> <span class="n">primrec</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="finding-square-roots">
<h2>Finding Square Roots<a class="headerlink" href="#finding-square-roots" title="Permalink to this headline"></a></h2>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sqrt</span> <span class="o">==</span> <span class="n">gsra</span> <span class="n">within</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="../index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Newtons method</a><ul>
<li><a class="reference internal" href="#a-generator-for-approximations">A Generator for Approximations</a><ul>
<li><a class="reference internal" href="#a-function-to-compute-the-next-approximation">A Function to Compute the Next Approximation</a></li>
<li><a class="reference internal" href="#make-it-into-a-generator">Make it into a Generator</a></li>
<li><a class="reference internal" href="#a-generator-of-square-root-approximations">A Generator of Square Root Approximations</a></li>
</ul>
</li>
<li><a class="reference internal" href="#finding-consecutive-approximations-within-a-tolerance">Finding Consecutive Approximations <code class="docutils literal notranslate"><span class="pre">within</span></code> a Tolerance</a><ul>
<li><a class="reference internal" href="#predicate">Predicate</a></li>
<li><a class="reference internal" href="#base-case">Base-Case</a></li>
<li><a class="reference internal" href="#recur">Recur</a></li>
<li><a class="reference internal" href="#setting-up">Setting up</a></li>
<li><a class="reference internal" href="#within"><code class="docutils literal notranslate"><span class="pre">within</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#finding-square-roots">Finding Square Roots</a></li>
</ul>
</li>
</ul>
<div class="relations">
<h3>Related Topics</h3>
<ul>
<li><a href="../index.html">Documentation overview</a><ul>
<li><a href="index.html">Essays about Programming in Joy</a><ul>
<li>Previous: <a href="Trees.html" title="previous chapter">Treating Trees</a></li>
<li>Next: <a href="Quadratic.html" title="next chapter">Quadratic formula</a></li>
</ul></li>
</ul></li>
</ul>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="../_sources/notebooks/Newton-Raphson.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="footer" role="contentinfo">
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">
<img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" />
</a>
<br />
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Thun Documentation</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://joypy.osdn.io/" property="cc:attributionName" rel="cc:attributionURL">Simon Forman</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://osdn.net/projects/joypy/" rel="dct:source">https://osdn.net/projects/joypy/</a>.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.3.
</div>
</body>
</html>