Thun/joy_code/bigints/divmod.py

230 lines
5.3 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright © 2022 Simon Forman
#
# This file is part of Thun
#
# Thun is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Thun is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Thun. If not see <http://www.gnu.org/licenses/>.
#
'''
Let's grok division (and modulus.)
For now we will deal with both positive
(or at least of the same sign.)
'''
from random import randint
def div_mod(A, B):
'''
A and B are lists of digits, LSB->MSB.
'''
if not A:
return [], []
if not B:
raise ZeroDivisionError()
a_len, b_len = len(A), len(B)
if -1 == cmp_digits(A, B): # A < B
return [], A
# Whew! Okay, we got all that out of the way.
# A > B
A, A_digits = A[:-b_len], A[-b_len:]
if -1 == cmp_digits(A_digits, B):
# Because we know
# A > B AND a_len >= b_len (aka len(A_digits))
# if A_digits < B there must be at least one more
# digit in A:
assert a_len > b_len
A_digits.insert(0, A.pop())
assert -1 < cmp_digits(A_digits, B) # A_digits >= B
q, R = lil_divmod(A_digits, B)
# So we have divided a prefix of A by B
# resulting in a digit q of the answer Q
# and a remainder R that must be extended
# with the more digits of A to make a new
# number N >= B
# what I want to do here is...
'''
___2___
72)145000
-144 = 72 * 2
---
1
B = 72
A_digits = 145
A = 000
q = 2
R = 1
'''
Q, Remainder = foo(A, B, R)
Q.append(q)
return Q, Remainder
def foo(Digits, Divisor, Prefix):
'''E.g.:
___2___
72)145000
-144 = 72 * 2
---
1
Digits = 000
Divisor = 72
Prefix = 1
'''
Quotient = []
while Digits:
Prefix.insert(0, Digits.pop())
if -1 < cmp_digits(Prefix, Divisor): # Prefix >= Divisor
break
Quotient.insert(0, 0)
'''
One iteration through the while loop:
___20__
72)145000
-144| = 72 * 2
---|
10
Another iteration through the while loop:
___20__
72)145000
-144|| = 72 * 2
---||
100 >= 72
Digits = 0
Divisor = 72 (still)
Prefix = 100
At this point Prefix >= Divisor OR Digits == [] OR BOTH
if Prefix < Divisor AND not Digits:
the remainder is Prefix
return Quotient, Prefix
'''
if -1 == cmp_digits(Prefix, Divisor) and not Digits:
return Quotient, Prefix
'''
if Prefix < Divisor AND Digits:
Can't get here
'''
assert -1 < cmp_digits(Prefix, Divisor) # Prefix >= Divisor
q, Remainder = lil_divmod(Prefix, Divisor)
Quotient.insert(0, q)
'''
___20q_
72)145000
-144|| = 72 * 2
---||
100 >= 72
N = 72 * q
---
28 = (100 - N) = (100 - 72q)
Remainder = 28
New_Prefix = Remainder
Digits = 0 (still)
Divisor = 72 (still)
'''
if Digits:
Q, Remainder = foo(Digits, Divisor, Remainder)
Quotient = Q + Quotient
return Quotient, Remainder
def lil_divmod(A, B):
assert -1 < cmp_digits(A, B) # A >= B
assert A and B
# There is a greatest digit in 1..9 such that:
# B * digit <= A
# The obvious thing to do here is a bisect search,
# if we were really just doing 1..9 we could go linear.
# Maybe drive it by the bits in digit?
digit = 9
Q = mul_digit_by_list_of_digits(digit, B)
while 1 == cmp_digits(Q, A): # Q > A
digit = digit - 1
if not digit:
raise ValueError('huh?')
Q = mul_digit_by_list_of_digits(digit, B)
assert -1 < cmp_digits(A, Q)
assert list_to_int(A) >= list_to_int(Q)
remainder = subtract(A, Q)
assert -1 == cmp_digits(remainder, B) # Remainder < Divisor
return digit, remainder
def mul_digit_by_list_of_digits(digit, A):
assert 0 <= digit <= 9
for n in A:
assert 0 <= n <= 9
return int_to_list(list_to_int(A) * digit)
def int_to_list(i):
assert i >= 0
if not i: return []
return list(map(int, str(i)[::-1]))
def list_to_int(A):
if not A: return 0
i = int(''.join(map(str, A[::-1])))
assert i >= 0
return i
def cmp_digits(A, B):
a, b = list_to_int(A), list_to_int(B)
return 1 if a > b else 0 if a == b else -1
def subtract(A, B):
return int_to_list(list_to_int(A) - list_to_int(B))
def try_it(a, b):
A = int_to_list(a)
B = int_to_list(b)
print(f'divmod({list_to_int(A)}, {list_to_int(B)}) = ', end='')
Q, R = div_mod(A, B)
q, r = divmod(a, b)
assert q == list_to_int(Q)
assert r == list_to_int(R)
print(f'{list_to_int(Q)}, {list_to_int(R)}')
for _ in range(10**6):
try_it(
randint(0, 10**randint(8, 15)),
randint(1, 10**randint(1, 15))
)