Thun/docs/html/notebooks/BigInts.html

1150 lines
46 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html>
<head>
<meta charset="utf-8">
<title>BigNums in Joy</title>
<link rel="stylesheet" href="css/font/fonts.css">
<link rel="stylesheet" href="css/site.css">
<script src="Joy.js"></script>
</head>
<body>
<div id="joy_interpreter"></div>
<h1>BigNums in Joy</h1>
<p>Most of the implementations of Thun support
<a href="https://en.wikipedia.org/wiki/BigNum">BigNums</a>, either built-in or as
libraries, but some host languages and systems do not. In those cases it
would be well to have a pure-Joy implementation.</p>
<p>We can model bignums as a pair of a Boolean value for the sign and a list
of integers for the digits. The bool will be the first item on a list
followed by zero or more integer digits, with the Least Significant digit
at the top (closest to the head of the list.) E.g.:</p>
<pre><code>[true 1]
</code></pre>
<p>Our <em>base</em> for the digits will be dictated by the size of the integers
supported by the host system. Let's imagine we're using 32-bit signed
ints, so our base will be not 10, but 2³¹. (We're ignoring the sign
bit.)</p>
<pre><code>joy? 2 31 pow
2147483648
</code></pre>
<p>So our digits are not 0..9, but 0..2147483647</p>
<h3><code>base</code></h3>
<p>We can <code>inscribe</code> a constant function <code>base</code> to keep this value handy.</p>
<pre><code>2147483648
joy? unit [base] swoncat
[base 2147483648]
joy? inscribe
</code></pre>
<p>It's a little "wrong" to use the
dictionary to store values like this, however, this is how Forth does it
and if your design is good it works fine. Just be careful, and wash
your hands afterward.</p>
<p>This also permits a kind of parameterization. E.g. let's say we wanted
to use base 10 for our digits, maybe during debugging. All that requires
is to rebind the symbol <code>base</code> to 10.</p>
<pre><code>[base 10] inscribe
</code></pre>
<h2>Converting Between Host BigNums and Joy BigNums</h2>
<p>We will work with one of the Joy interpreters that has bignums already so
we can convert "native" ints to our Joy bignums and vice versa. This
will be helpful to check our work. Later we can deal with converting to
and from strings (which this Joy doesn't have anyway, so it's probably
fine to defer.)</p>
<p>To get the sign bool we can just use <code>!-</code> ("not negative") and to get the
list of digits we repeatedly <code>divmod</code> the number by our <code>base</code>:</p>
<h3><code>moddiv</code></h3>
<p>We will want the results in the opposite order, so let's define a little
helper function to do that:</p>
<pre><code>[moddiv divmod swap] inscribe
</code></pre>
<h3><code>get-digit</code></h3>
<pre><code>[get-digit base moddiv] inscribe
</code></pre>
<p>We keep it up until we get to zero. This suggests a <code>while</code> loop:</p>
<pre><code>[0 &gt;] [get-digit] while
</code></pre>
<p>Let's try it:</p>
<pre><code>joy? 1234567890123456789012345678901234567890
1234567890123456789012345678901234567890
joy? [0 &gt;] [get-digit] while
1312754386 1501085485 57659106 105448366 58 0
</code></pre>
<p>We need to <code>pop</code> at the end to ditch that zero.</p>
<pre><code>[0 &gt;] [get-digit] while pop
</code></pre>
<p>But we want these numbers in a list. The naive way using <code>infra</code>
generates them in the reverse order of what we would like.</p>
<pre><code>joy? [1234567890123456789012345678901234567890]
[1234567890123456789012345678901234567890]
joy? [[0 &gt;] [get-digit] while pop]
[1234567890123456789012345678901234567890] [[0 &gt;] [get-digit] while pop]
joy? infra
[58 105448366 57659106 1501085485 1312754386]
</code></pre>
<p>We could just reverse the list, but it's more efficient to build the
result list in the order we want. We construct a simple recursive
function. (TODO: link to the recursion combinators notebook.)</p>
<p>The predicate will check that our number is yet positive:</p>
<pre><code>[0 &lt;=]
</code></pre>
<p>When we find the zero we will discard it and start a list:</p>
<pre><code>[pop []]
</code></pre>
<p>But until we do find the zero, get digits:</p>
<pre><code>[get-digit]
</code></pre>
<p>Once we have found all the digits and ditched the zero and put our
initial empty list on the stack we <code>cons</code> up the digits we have found:</p>
<pre><code>[i cons] genrec
</code></pre>
<p>Let's try it:</p>
<pre><code>joy? 1234567890123456789012345678901234567890
1234567890123456789012345678901234567890
joy? [0 &lt;=] [pop []] [get-digit] [i cons] genrec
[1312754386 1501085485 57659106 105448366 58]
</code></pre>
<p>Okay.</p>
<h3>Representing Zero</h3>
<p>This will return the empty list for zero:</p>
<pre><code>joy? 0 [0 &lt;=] [pop []] [get-digit] [i cons] genrec
[]
</code></pre>
<p>I think this is better than returning <code>[0]</code> because that amounts to a
single leading zero.</p>
<pre><code>[true] is "0"
[true 0] is "00"
</code></pre>
<p>Eh?</p>
<h3><code>digitalize</code></h3>
<p>Let's <code>inscribe</code> this function under the name <code>digitalize</code>:</p>
<pre><code>[digitalize [0 &lt;=] [pop []] [get-digit] [i cons] genrec] inscribe
</code></pre>
<p>Putting it all together we have <code>!-</code> for the sign and <code>abs digitalize</code>
for the digits, followed by <code>cons</code>:</p>
<pre><code>[!-] [abs digitalize] cleave cons
</code></pre>
<h3><code>to-bignum</code></h3>
<pre><code>[to-bignum [!-] [abs digitalize] cleave cons] inscribe
</code></pre>
<h3>Converting from Joy BigNums to Host BigNums</h3>
<p>To convert a bignum into a host integer we need to keep a "power" value
on the stack, setting it up and discarding it at the end, as well as an
accumulator value starting at zero. We will deal with the sign bit later.</p>
<pre><code>rest 1 0 rolldown
</code></pre>
<p>So the problem is to derive:</p>
<pre><code> 1 0 [digits...] [F] step
------------------------------
result
</code></pre>
<p>Where <code>F</code> is:</p>
<pre><code> power acc digit F
---------------------------------------
(power*base) (acc + (power*digit)
</code></pre>
<p>Now this is an interesting function. The first thing I noticed is that it
has two results that can be computed independently, suggesting a form
like:</p>
<pre><code>[G] [H] clop popdd
</code></pre>
<p>(Then I noticed that <code>power *</code> is a sub-function of both <code>G</code> and <code>H</code>, but
let's not overthink it, eh?)</p>
<p>So for the first result (the next power) we want:</p>
<pre><code>G == popop base *
</code></pre>
<p>And for the result:</p>
<pre><code>H == rolldown * +
</code></pre>
<h3><code>add-digit</code></h3>
<p>Let's call this <code>add-digit</code>:</p>
<pre><code>[add-digit [popop base *] [rolldown * +] clop popdd] inscribe
</code></pre>
<p>Try it out:</p>
<pre><code>[true 1312754386 1501085485 57659106 105448366 58]
joy? rest 1 0 rolldown
1 0 [1312754386 1501085485 57659106 105448366 58]
joy? [add-digit] step
45671926166590716193865151022383844364247891968 1234567890123456789012345678901234567890
joy? popd
1234567890123456789012345678901234567890
</code></pre>
<h3><code>from-bignum</code></h3>
<pre><code>[from-bignum rest 1 0 rolldown [add-digit] step popd] inscribe
</code></pre>
<p>Try it out:</p>
<pre><code>joy? 1234567890123456789012345678901234567890 to-bignum
[true 1312754386 1501085485 57659106 105448366 58]
joy? from-bignum
1234567890123456789012345678901234567890
</code></pre>
<p>Not bad.</p>
<h3>What about that sign bit?</h3>
<p>Time to deal with that.</p>
<p>Consider a Joy bignum:</p>
<pre><code>[true 1312754386 1501085485 57659106 105448366 58]
</code></pre>
<p>To get the sign bit would just be <code>first</code>.</p>
<pre><code>[true 1312754386 1501085485 57659106 105448366 58]
joy? [from-bignum] [first] cleave
1234567890123456789012345678901234567890 true
</code></pre>
<p>Then use the sign flag to negate the int if the bignum was negative:</p>
<pre><code>[neg] [] branch
</code></pre>
<h3><code>from-bignum</code></h3>
<p>This gives:</p>
<pre><code>[from-bignum [from-bignum] [first] cleave [neg] [] branch] inscribe
</code></pre>
<h2>Our Source Code So Far</h2>
<pre><code>[base 2147483648] inscribe
[moddiv divmod swap] inscribe
[get-digit base moddiv] inscribe
[digitalize [0 &lt;=] [pop []] [get-digit] [i cons] genrec] inscribe
[to-bignum [!-] [abs digitalize] cleave cons] inscribe
[add-digit [popop base *] [rolldown * +] clop popdd] inscribe
[from-bignum.prep rest 1 0 rolldown] inscribe
[from-bignum from-bignum.prep [add-digit] step popd] inscribe
[from-bignum [from-bignum] [first] cleave [neg] [] branch] inscribe
</code></pre>
<h2>Addition of Like Signs</h2>
<h3><code>add-digits</code></h3>
<p>Let's figure out how to add two lists of digits. We will assume that the
signs are the same (both lists of digits represent numbers of the same
sign, both positive or both negative.) We're going to want a recursive
function, of course, but it's not quite a standard <em>hylomorphism</em> for (at
least) two reasons:</p>
<ul>
<li>We're tearing down two lists simultaneously.</li>
<li>They might not be the same length.</li>
</ul>
<p>There are two base cases: two empty lists or one empty list, the
recursive branch is taken only if both lists are non-empty.</p>
<p>We will also need an inital <code>false</code> value for a carry flag. This implies
the following structure:</p>
<pre><code>false rollup [add-digits.P] [add-digits.THEN] [add-digits.R0] [add-digits.R1] genrec
</code></pre>
<h3>The predicate</h3>
<p>The situation will be like this, a Boolean flag followed by two lists of
digits:</p>
<pre><code>bool [a ...] [b ...] add-digits.P
</code></pre>
<p>The predicate must evaluate to <code>false</code> <em>iff</em> both lists are non-<code>null</code>:</p>
<pre><code>add-digits.P == [null] ii \/
</code></pre>
<h3>The base cases</h3>
<p>On the non-recursive branch of the <code>genrec</code> we have to decide between
three cases, but because addition is commutative we can lump together the
first two:</p>
<pre><code>bool [] [b ...] add-digits.THEN
bool [a ...] [] add-digits.THEN
bool [] [] add-digits.THEN
</code></pre>
<p>So we have an <code>ifte</code> expression:</p>
<pre><code>add-digits.THEN == [add-digits.THEN.P] [add-digits.THEN.THEN] [add-digits.THEN.ELSE] ifte
</code></pre>
<p>Let's define the predicate:</p>
<pre><code>add-digits.THEN.P == [null] ii /\
</code></pre>
<p>So <code>add-digits.THEN.THEN</code> deals with the case of both lists being empty,
and the <code>add-digits.THEN.ELSE</code> branch deals with one list of digits being
longer than the other.</p>
<h3>One list empty</h3>
<p>In the cases where one of the two lists (but not both) is empty:</p>
<pre><code>carry [a ...] [] add-digits.THEN.ELSE
carry [] [b ...] add-digits.THEN.ELSE
</code></pre>
<p>We first get rid of the empty list:</p>
<pre><code>[null] [pop] [popd] ifte
</code></pre>
<h3><code>ditch-empty-list</code></h3>
<pre><code>[ditch-empty-list [null] [pop] [popd] ifte] inscribe
add-digits.THEN.ELSE == ditch-empty-list add-digits.THEN.ELSE
</code></pre>
<p>Now we have:</p>
<pre><code>carry [n ...] add-digits.THEN.ELSE
</code></pre>
<p>This is just <code>add-carry-to-digits</code> which we will derive in a moment, but
first a side-quest...</p>
<h3><code>add-with-carry</code></h3>
<p>To get ahead of ourselves a bit, we will want some function
<code>add-with-carry</code> that accepts a bool and two ints and leaves behind a new
int and a new Boolean carry flag. With some abuse of notation we can
treat bools as ints (type punning as in Python) and write:</p>
<pre><code> carry a b add-with-carry
---------------------------------
(a+b+carry) carry
</code></pre>
<p>(I find it interesting that this function accepts the carry from below
the int args but returns it above the result. Hmm...)</p>
<h3><code>bool-to-int</code></h3>
<pre><code>[bool-to-int [0] [1] branch] inscribe
</code></pre>
<p>We can use this function to convert the carry flag to an integer and then
add it to the sum of the two digits:</p>
<pre><code>[bool-to-int] dipd + +
</code></pre>
<p>So the first part of <code>add-with-carry</code> is <code>[bool-to-int] dipd + +</code> to get
the total, then we need to do <code>base mod</code> to get the new digit and <code>base &gt;=</code>
to get the new carry flag. Factoring give us:</p>
<pre><code>base [mod] [&gt;=] clop
</code></pre>
<p>Put it all together and we have:</p>
<pre><code>[add-with-carry.0 [bool-to-int] dipd + +] inscribe
[add-with-carry.1 base [mod] [&gt;=] clop] inscribe
[add-with-carry add-with-carry.0 add-with-carry.1] inscribe
</code></pre>
<h3>Now back to <code>add-carry-to-digits</code></h3>
<p>This should be a very simple recursive function. It accepts a Boolean
<code>carry</code> flag and a non-empty list of digits (the list is only going to be
non-empty on the first iteration, after that we have to check it
ourselves because we may have emptied it of digits and still have a
<code>true</code> <code>carry</code> flag) and it returns a list of digits, consuming the carry
flag.</p>
<pre><code>add-carry-to-digits == [actd.P] [actd.THEN] [actd.R0] [actd.R1] genrec
</code></pre>
<p>The predicate is the carry flag itself inverted:</p>
<pre><code>actd.P == pop not
</code></pre>
<p>The base case simply discards the carry flag:</p>
<pre><code>actd.THEN == popd
</code></pre>
<p>So:</p>
<pre><code>add-carry-to-digits == [pop not] [popd] [actd.R0] [actd.R1] genrec
</code></pre>
<p>That leaves the recursive branch:</p>
<pre><code>true [n ...] actd.R0 [add-carry-to-digits] actd.R1
</code></pre>
<p>-or-</p>
<pre><code>true [] actd.R0 [add-carry-to-digits] actd.R1
</code></pre>
<p>We know that the Boolean value is <code>true</code>. We also know that the list will
be non-empty, but only on the first iteration of the <code>genrec</code>. It may be
that the list is empty on a later iteration.</p>
<p>The <code>actd.R0</code> function should check the list.</p>
<pre><code>actd.R0 == [null] [actd.R0.THEN] [actd.R0.ELSE] ifte
</code></pre>
<h3>If it's empty...</h3>
<pre><code> true [] actd.R0.THEN [add-carry-to-digits] actd.R1
--------------------------------------------------------
1 false [] [add-carry-to-digits] i cons
</code></pre>
<p>What we're seeing here is that <code>actd.R0.THEN</code> leaves the empty list of
digits on the stack, converts the carry flag to <code>false</code> and leave 1 on
the stack to be picked up by <code>actd.R1</code> and <code>cons</code>'d onto the list of
digits (e.g.: 999 -&gt; 1000, it's the new 1.)</p>
<p>This implies:</p>
<pre><code>actd.R1 == i cons
</code></pre>
<p>And:</p>
<pre><code>actd.R0.THEN == popd 1 false rolldown
</code></pre>
<p>We have the results in this order <code>1 false []</code> rather than some other
arrangement to be compatible (same types and order) with the result of
the other branch, which we now derive.</p>
<h3>If the list of digits isn't empty...</h3>
<p>With <code>actd.R1 == i cons</code> as above we have:</p>
<pre><code>true [a ...] actd.R0.ELSE [add-carry-to-digits] i cons
</code></pre>
<p>We want to get out that <code>a</code> value and use <code>add-with-carry</code> here:</p>
<pre><code> true 0 a add-with-carry [...] [add-carry-to-digits] i cons
----------------------------------------------------------------
(a+1) carry [...] [add-carry-to-digits] i cons
</code></pre>
<p>This leaves behind the new digit (a+1) for <code>actd.R1</code> and the new carry
flag for the next iteration.</p>
<p>So here is the specification of <code>actd.R0.ELSE</code>:</p>
<pre><code> true [a ...] actd.R0.ELSE
-----------------------------------
true 0 a add-with-carry [...]
</code></pre>
<p>It accepts a Boolean value and a non-empty list on the stack and is
responsible for <code>uncons</code>'ing <code>a</code> and <code>add-with-carry</code> and the initial 0:</p>
<pre><code> true [a ...] . 0 swap
true 0 [a ...] . uncons
true 0 a [...] . [add-with-carry] dip
true 0 a add-with-carry [...] .
</code></pre>
<h3><code>actd.R0.ELSE</code></h3>
<pre><code>[actd.R0.ELSE 0 swap uncons [add-with-carry] dip] inscribe
</code></pre>
<p>Putting it all together:</p>
<pre><code>[bool-to-int [0] [1] branch] inscribe
[ditch-empty-list [null] [pop] [popd] ifte] inscribe
[add-with-carry.0 [bool-to-int] dipd + +] inscribe
[add-with-carry.1 base [mod] [&gt;=] clop] inscribe
[add-with-carry add-with-carry.0 add-with-carry.1] inscribe
[actd.R0.THEN popd 1 false rolldown] inscribe
[actd.R0.ELSE 0 swap uncons [add-with-carry] dip] inscribe
[actd.R0 [null] [actd.R0.THEN] [actd.R0.ELSE] ifte] inscribe
[add-carry-to-digits [pop not] [popd] [actd.R0] [i cons] genrec] inscribe
</code></pre>
<p>We can set <code>base</code> to 10 to see it in action with familiar decimal digits:</p>
<pre><code>joy? [base 10] inscribe
</code></pre>
<p>Let's add a carry to 999:</p>
<pre><code>joy? true [9 9 9]
true [9 9 9]
joy? add-carry-to-digits
[0 0 0 1]
</code></pre>
<p>Not bad! Recall that our digits are stored in with the Most Significant
Digit at the bottom of the list.</p>
<p>Let's add another carry:</p>
<pre><code>joy? true swap
true [0 0 0 1]
joy? add-carry-to-digits
[1 0 0 1]
</code></pre>
<p>What if we make the just the first digit into 9?</p>
<pre><code>joy? 9 swons
[9 1 0 0 1]
joy? true swap
true [9 1 0 0 1]
joy? add-carry-to-digits
[0 2 0 0 1]
</code></pre>
<p>Excellent!</p>
<p>And adding <code>false</code> does nothing, yes?</p>
<pre><code>joy? false swap
false [0 2 0 0 1]
joy? add-carry-to-digits
[0 2 0 0 1]
</code></pre>
<p>Wonderful!</p>
<p>So that handles the cases where one of the two lists (but not both) is
empty.</p>
<pre><code>add-digits.THEN.ELSE == ditch-empty-list add-carry-to-digits
</code></pre>
<h3>Both lists empty</h3>
<p>If both lists are empty we discard one list and check the carry to
determine our result as described above:</p>
<pre><code>bool [] [] add-digits.THEN.THEN
</code></pre>
<p>Simple enough:</p>
<pre><code>bool [] [] . pop
bool [] . swap
[] bool . [] [1 swons] branch
</code></pre>
<p>True branch:</p>
<pre><code>[] true . [] [1 swons] branch
[] .
</code></pre>
<p>False branch:</p>
<pre><code>[] false . [] [1 swons] branch
[] . 1 swons
[1] .
</code></pre>
<p>So:</p>
<pre><code>add-digits.THEN.THEN == pop swap [] [1 swons] branch
</code></pre>
<p>Here are the definitions, ready to <code>inscribe</code>:</p>
<pre><code>[add-digits.THEN.THEN pop swap [] [1 swons] branch] inscribe
[add-digits.THEN.ELSE ditch-empty-list add-carry-to-digits] inscribe
[add-digits.THEN [[null] ii /\] [add-digits.THEN.THEN] [add-digits.THEN.ELSE] ifte] inscribe
</code></pre>
<h2>And recur...</h2>
<p>Now we go back and derive the recursive branch that is taken only if both
lists are non-empty.</p>
<pre><code>bool [a ...] [b ...] add-digits.R0 [add-digits] add-digits.R1
</code></pre>
<p>We just need to knock out those recursive branch functions
<code>add-digits.R0</code> and <code>add-digits.R1</code> and we're done.</p>
<p>First we will want to <code>uncons</code> the digits. Let's write a function that
just does that:</p>
<pre><code>[uncons] ii swapd
</code></pre>
<p>Try it:</p>
<pre><code>joy? [1 2 3] [4 5 6]
[1 2 3] [4 5 6]
joy? [uncons] ii swapd
1 4 [2 3] [5 6]
</code></pre>
<h3><code>uncons-two</code></h3>
<p>We could call this <code>uncons-two</code>:</p>
<pre><code>[uncons-two [uncons] ii swapd] inscribe
</code></pre>
<p>This brings us to:</p>
<pre><code>bool a b [...] [...] add-digits.R0 [add-digits] add-digits.R1
</code></pre>
<p>It's at this point that we'll want to employ the <code>add-with-carry</code>
function:</p>
<pre><code>bool a b [...] [...] [add-with-carry] dipd add-digits.R0″ [add-digits'] add-digits.R1
bool a b add-with-carry [...] [...] add-digits.R0″ [add-digits'] add-digits.R1
(a+b) bool [...] [...] add-digits.R0″ [add-digits'] add-digits.R1
</code></pre>
<p>If we postulate a <code>cons</code> in our <code>add-digits.R1</code> function...</p>
<pre><code>(a+b) bool [...] [...] add-digits.R0″ [add-digits'] i cons
</code></pre>
<p>Then it seems like we're done? <code>add-digits.R0″</code> is nothing?</p>
<pre><code>add-digits.R0 == uncons-two [add-with-carry] dipd
add-digits.R1 == i cons
</code></pre>
<h3><code>add-digits</code></h3>
<pre><code>add-digits == false rollup [add-digits.P] [add-digits.THEN] [add-digits.R0] [i cons] genrec
</code></pre>
<p>The source code so far is now:</p>
<pre><code>[bool-to-int [0] [1] branch] inscribe
[ditch-empty-list [null] [pop] [popd] ifte] inscribe
[uncons-two [uncons] ii swapd] inscribe
[add-with-carry.0 [bool-to-int] dipd + +] inscribe
[add-with-carry.1 base [mod] [&gt;=] clop] inscribe
[add-with-carry add-with-carry.0 add-with-carry.1] inscribe
[actd.R0.THEN popd 1 false rolldown] inscribe
[actd.R0.ELSE 0 swap uncons [add-with-carry] dip] inscribe
[actd.R0 [null] [actd.R0.THEN] [actd.R0.ELSE] ifte] inscribe
[add-carry-to-digits [pop not] [popd] [actd.R0] [i cons] genrec] inscribe
[add-digits.R0 uncons-two [add-with-carry] dipd] inscribe
[add-digits.THEN.THEN pop swap [] [1 swons] branch] inscribe
[add-digits.THEN.ELSE ditch-empty-list add-carry-to-digits] inscribe
[add-digits.THEN [[null] ii /\] [add-digits.THEN.THEN] [add-digits.THEN.ELSE] ifte] inscribe
[add-digits [[null] ii \/] [add-digits.THEN] [add-digits.R0] [i cons] genrec] inscribe
[add-digits false rollup add-digits] inscribe
</code></pre>
<p>Let's set <code>base</code> to 10 and try it out:</p>
<pre><code>joy? [base 10] inscribe
joy? 12345 to-bignum
[true 5 4 3 2 1]
joy? rest
[5 4 3 2 1]
joy? 999 to-bignum
[5 4 3 2 1] [true 9 9 9]
joy? rest
[5 4 3 2 1] [9 9 9]
joy? add-digits
[4 4 3 3 1]
joy? true swons
[true 4 4 3 3 1]
joy? from-bignum
13344
joy? 12345 999 +
13344 13344
</code></pre>
<p>Neat!</p>
<h3><code>add-bignums</code></h3>
<p>There is one more thing we have to do to use this: we have to deal with
the signs.</p>
<pre><code>add-bignums [add-bignums.P] [add-bignums.THEN] [add-bignums.ELSE] ifte
</code></pre>
<p>To check are they the same sign?</p>
<p>With:</p>
<pre><code>[xor [] [not] branch] inscribe
[nxor xor not] inscribe
</code></pre>
<p>We have:</p>
<pre><code>add-bignums.P == [first] ii nxor
</code></pre>
<p>If they are the same sign (both positive or both negative) we can use
<code>uncons</code> to keep one of the sign Boolean flags around and reuse it at the
end, and <code>rest</code> to discard the other, then <code>add-digits</code> to add the
digits, then <code>cons</code> that flag we saved onto the result digits list:</p>
<pre><code>add-bignums.THEN == [uncons] dip rest add-digits cons
</code></pre>
<p>If they are not both positive or both negative then we negate one of them
and subtract instead (adding unlikes is actually subtraction):</p>
<pre><code>add-bignums.ELSE == neg-bignum sub-bignums
</code></pre>
<p>So here we go:</p>
<pre><code>[same-sign [first] ii xor not] inscribe
[add-like-bignums [uncons] dip rest add-digits cons] inscribe
[add-bignums [same-sign] [add-like-bignums] [neg-bignum sub-bignums] ifte] inscribe
</code></pre>
<p>But we haven't implemented <code>neg-bignum</code> or <code>sub-bignums</code> yet...</p>
<p>We'll get to those in a moment, but first an interlude.</p>
<h2>Interlude: <code>list-combiner</code></h2>
<p>Let's review the form of our function <code>add-digits</code> (eliding the preamble
<code>false rollup</code>) and <code>add-digits.THEN</code>:</p>
<pre><code>add-digits == [add-digits.P] [add-digits.THEN] [add-digits.R0] [add-digits.R1] genrec
add-digits.THEN == [add-digits.THEN.P] [add-digits.THEN.THEN] [add-digits.THEN.ELSE] ifte
</code></pre>
<p>Recall also:</p>
<pre><code> add-digits.P == [null] ii \/
add-digits.THEN.P == [null] ii /\
</code></pre>
<p>Generalizing the names:</p>
<pre><code> F == [P] [THEN] [R0] [R1] genrec
THEN == [THEN.P] [THEN.THEN] [THEN.ELSE] ifte
</code></pre>
<p>With auxiliary definitions:</p>
<pre><code>null-two == [null] ii
both-null == null-two /\
either-or-both-null == null-two \/
</code></pre>
<p>Rename predicates:</p>
<pre><code> F == [either-or-both-null] [THEN] [R0] [R1] genrec
THEN == [both-null] [THEN.THEN] [THEN.ELSE] ifte
</code></pre>
<p>Substitute <code>THEN</code>:</p>
<pre><code> F == [either-or-both-null] [[both-null] [THEN.THEN] [THEN.ELSE] ifte] [R0] [R1] genrec
</code></pre>
<p>This is a little awkward, so let's pretend that we have a new combinator
<code>two-list-genrec</code> that accepts four quotes and does <code>F</code>:</p>
<pre><code>F == [THEN.THEN] [THEN.ELSE] [R0] [R1] two-list-genrec
</code></pre>
<p>So <code>THEN.THEN</code> handles the (non-recursive) case of both lists being
empty, <code>THEN.ELSE</code> handles the (non-recursive) case of one or the other
list being empty, and <code>R0 [F] R1</code> handles the (recursive) case of both
lists being non-empty.</p>
<p>Recall that our <code>R1</code> is just <code>i cons</code>, we can fold that in to the
definition of another new combinator that combines two lists into one:</p>
<pre><code>list-combiner-genrec == [i cons] two-list-genrec
</code></pre>
<p>So:</p>
<pre><code>F == [both-empty] [one-empty] [both-non-empty] list-combiner-genrec
</code></pre>
<p>Then for <code>add-digits</code> we would have:</p>
<pre><code> both-empty == pop swap [] [1 swons] branch
one-empty == ditch-empty-list add-carry-to-digits
both-non-empty == uncons-two [add-with-carry] dipd
add-digits == [both-empty] [one-empty] [both-non-empty] list-combiner-genrec
</code></pre>
<p>Which would expand into:</p>
<pre><code>add-digits == [either-or-both-null]
[[both-null] [both-empty] [one-empty] ifte]
[both-non-empty]
[i cons]
genrec
</code></pre>
<p>It's pretty straight forward to make a functions that converts the three
quotes into the expanded form (a kind of "macro") but you might want to
separate that from the actual <code>genrec</code> evaluation. It would be better to
run the "macro" once, append the <code>[genrec]</code> quote to the resulting form,
and <code>inscribe</code> that, rather than putting the "macro" into the definition.
That way you avoid re-evaluating the "macro" on each iteration.</p>
<p>The simplification of the expanded form to the simpler version by coining
the <code>list-combiner-genrec</code> function is the "semantic compression" aspect
of factoring. If you choose your seams and names well, the code is
(relatively) self-descriptive.</p>
<p>In any event, now that we know what's going on, we don't actually need
the "macro", we can just write out the expanded version directly.</p>
<p>Source code:</p>
<pre><code>[null-two [null] ii] inscribe
[both-null null-two /\] inscribe
[either-or-both-null null-two \/] inscribe
[add-digits.both-empty pop swap [] [1 swons] branch] inscribe
[add-digits.one-empty ditch-empty-list add-carry-to-digits] inscribe
[add-digits.both-non-empty uncons-two [add-with-carry] dipd] inscribe
[add-digits [either-or-both-null] [[both-null] [add-digits.both-empty] [add-digits.one-empty] ifte] [add-digits.both-non-empty] [i cons] genrec] inscribe
</code></pre>
<h2><code>neg-bignum</code></h2>
<p>Well, that was fun! And we'll reuse it in a moment when we derive <code>sub-bignums</code>.
But for now let's clear our palate with a nice simple function: <code>neg-bignum</code>.</p>
<p>To negate a Joy bignum you just invert the Boolean value at the head of the list.</p>
<pre><code>neg-bignum == [not] infra
</code></pre>
<h2>Subtraction of Like Signs</h2>
<p>Subtraction is similar to addition in that it's a simple recursive algorithm that works digit-by-digit.
It has the same three cases as well, so we can reuse the <code>list-combiner-genrec</code> "macro" that
we specified (but did not yet derive) a moment ago.</p>
<pre><code> sub-digits == initial-carry sub-digits'
sub-digits' == [both-empty] [one-empty] [both-non-empty] list-combiner-genrec
</code></pre>
<p>Okay, we're almost ready to implement subtraction, but there's a wrinkle!
When we subtract a smaller (absolute) value from a larger (absolute)
value there's no problem:</p>
<pre><code>10 - 5 = 5
</code></pre>
<p>But I don't know the algorithm to subtract a larger number from a smaller
one:</p>
<pre><code>5 - 10 = ???
</code></pre>
<p>The answer is -5, of course, but what's the algorithm? How to make the
computer figure that out?</p>
<p>We make use of the simple algebraic identity:</p>
<pre><code>a - b = -(b - a)
</code></pre>
<p>So if we want to subtract a larger number <code>a</code> from a smaller one <code>b</code> we
can instead subtract the smaller from the larger and invert the sign:</p>
<pre><code>5 - 10 = -(10 - 5)
</code></pre>
<p>To do this we need a function <code>gt-digits</code> that will tell us which of two
digit lists represents the larger integer.</p>
<h3><code>length</code></h3>
<p>Gentle reader, it was at this time that I realized I don't have a list length function yet!</p>
<pre><code>[length [pop ++] step_zero] inscribe
</code></pre>
<h3>Comparing Lists of Integers</h3>
<p>We only need to compare the digits of the numbers if one list of digits is longer than the other.
We could use <code>length</code> on both lists and then <code>cmp</code>:</p>
<pre><code>a b [G] [E] [L] cmp
</code></pre>
<p>If the top list is longer than the second list the function should return <code>true</code>,
and if the top list is shorter than the second list the function should return <code>false</code>,</p>
<pre><code>dup2 [length] ii [true] [E] [false] cmp
</code></pre>
<p>If both lists are non-empty we have to compare digits starting with the ends.</p>
<pre><code>E == zip reverse compare-digits
</code></pre>
<p>But this is inefficient! The <code>length</code> function will traverse each list once,
then the <code>zip</code> function will traverse both lists and build a new list of pairs,
then the <code>reverse</code> function will traverse that list and rebuild it,
then the <code>compare-digits</code> will traverse that list looking for unequal pairs...
It's a lot of work that we don't really want or need to do.</p>
<h3>A More Efficient Comparison</h3>
<p>What we really want is a function that iterates through both lists together
and:</p>
<ul>
<li>If the top list is empty and the second list isn't then the whole function should return <code>false</code>.</li>
<li>If the top list is non-empty and the second list is empty then the whole function should return <code>true</code>.</li>
<li>If both lists are empty we start checking pairs of digits (that we got from the recursive case.)</li>
<li>If both lists are non-empty we <code>uncons-two</code> digits for later comparison and recur.</li>
</ul>
<p>Let's start designing the function.</p>
<pre><code> [...] [...] F
-------------------
bool
</code></pre>
<p>We will need a list on which to put pairs</p>
<pre><code>F == &lt;&lt;{} F
[] [...] [...] F
----------------------
bool
</code></pre>
<p>It's a recursive function:</p>
<pre><code>F == [P] [THEN] [R0] [R1] genrec
</code></pre>
<p>The predicate tests whether both of the two input lists are non-empty:</p>
<pre><code>P = null-two \/
</code></pre>
<p>(We defined this as <code>either-or-both-null</code> above.)</p>
<p>Let's look at the recursive case first:</p>
<pre><code> [...] [b ...] [a ...] R0 [F] R1
-------------------------------------------
[[b a] ...] [...] [...] F
</code></pre>
<p>So <code>R0</code> transfers items from the source list to the pairs list,
let's call it <code>shift-pair</code>:</p>
<pre><code> [...] [b ...] [a ...] shift-pair
--------------------------------------
[[b a] ...] [...] [...]
</code></pre>
<p>I'll leave that as an exercise for the reader for now.</p>
<p><code>R1</code> is just <code>i</code> (this is a <code>tailrec</code> function.)</p>
<pre><code>F == &lt;&lt;{} [either-or-both-null] [THEN] [shift-pair] tailrec
</code></pre>
<p>Now let's derive <code>THEN</code>, there are three cases:</p>
<pre><code>[pairs...] [] [] THEN
[pairs...] [b ...] [] THEN
[pairs...] [] [a ...] THEN
</code></pre>
<p>We can model this as a pair of <code>ifte</code> expressions, one nested in the other:</p>
<pre><code>[P] [THEN] [[P] [THEN] [ELSE] ifte] ifte
</code></pre>
<p>But in the event we won't need the inner <code>ifte</code>, see below.</p>
<p>The first predicate should check if both lists are empty:</p>
<pre><code>P == null-two /\
</code></pre>
<p>(We defined this as <code>both-null</code> above.)</p>
<p>If both lists are empty we check the pairs:</p>
<pre><code>THEN == popop compare-pairs
</code></pre>
<p>Otherwise if the top list is empty we return <code>false</code>, otherwise <code>true</code>,
and since this is a destructive operation we don't have to use <code>ifte</code> here:</p>
<pre><code>THEN == [both-null] [popop compare-pairs] [popopd null] ifte
F == &lt;&lt;{} [either-or-both-null] [THEN] [shift-pair] tailrec
</code></pre>
<p>Now we just have to write <code>compare-pairs</code> (and <code>shift-pair</code>.)</p>
<h3><code>shift-pair</code></h3>
<pre><code>[pair-up unit cons] inscribe
[shift-pair uncons-two [pair-up swons] dipd] inscribe
</code></pre>
<h3>Compare Pairs</h3>
<p>This function takes a list of pairs of digits (ints) and compares
them until it finds an unequal pair or runs out of pairs.</p>
<p>We are implementing "greater than" (b &gt; a) so if we run out of digits
that means the two numbers were equal, and so we return <code>false</code>:</p>
<pre><code>F == [null] [pop false] [R0] [R1] genrec
</code></pre>
<p>That leaves the recursive branch:</p>
<pre><code>[[b a] ...] R0 [F] R1
</code></pre>
<p>I figure we're going to want some sort of <code>ifte</code>. (But this turns out to
be a mistake!)</p>
<pre><code>[[b a] ...] [P] [THEN] [F] ifte
</code></pre>
<p>if b &gt; a we can stop and report <code>true</code>, otherwise we discard the pair and recur.</p>
<pre><code>P == first i &gt;
THEN == pop true
</code></pre>
<p>Note that that fails to discard the pair!</p>
<pre><code>[[b a] ...] [first i &gt;] [pop true] [F] ifte
</code></pre>
<p>If b &lt;= a this would just re-run <code>F</code> with the same list!</p>
<p>Oops! D'oh! I didn't think it through properly.</p>
<p>We need to distinguish all three case (&gt; = &lt;) so we want to use <code>cmp</code>:</p>
<pre><code>[[b a] ...] unswons i [G] [F] [L] cmp
</code></pre>
<p>Becomes:</p>
<pre><code>[...] b a [G] [F] [L] cmp
</code></pre>
<p>Note that we recur on equality (that is our <code>E</code> function is just <code>F</code> itself).</p>
<p>If we the digits are not equal we can quit the loop with the answer:</p>
<pre><code>[...] b a [pop true] [F] [pop false] cmp
</code></pre>
<p>So:</p>
<pre><code>R0 == unswons i [pop true]
R1 == [pop false] cmp
</code></pre>
<h3><code>compare-pairs</code></h3>
<pre><code>[compare-pairs.R0 unswons i [pop true]] inscribe
[compare-pairs.R1 [pop false] cmp] inscribe
[compare-pairs [null] [pop false] [compare-pairs.R0] [compare-pairs.R1] genrec] inscribe
</code></pre>
<h3><code>gt-digits</code></h3>
<pre><code>[gt-digits.THEN [both-null] [popop compare-pairs] [popopd null] ifte] inscribe
[gt-digits &lt;&lt;{} [either-or-both-null] [gt-digits.THEN] [shift-pair] tailrec] inscribe
</code></pre>
<h3>Almost Ready to Subtract</h3>
<p>Now we can subtract, we just have to remember to invert the sign bit if we swap the digit lists.</p>
<p>Maybe something like:</p>
<pre><code>check-gt == [gt-digits] [swap true] [false] ifte
</code></pre>
<p>To keep the decision around as a Boolean flag? We can <code>xor</code> it with the sign bit?</p>
<p>Let's start with two numbers on the stack, with the same sign:</p>
<pre><code>[bool int int int] [bool int int int]
</code></pre>
<p>Then we keep one of the sign Booleans around and discard the other:</p>
<pre><code>[bool int int int] [bool int int int] [uncons] dip rest
[bool int int int] uncons [bool int int int] rest
bool [int int int] [bool int int int] rest
bool [int int int] [int int int]
</code></pre>
<p>So what we really want to do is <code>swap</code> and <code>not</code>:</p>
<pre><code>check-gt == [gt-digits] [swap [not] dipd] [] ifte
</code></pre>
<h3><code>extract-sign</code></h3>
<pre><code>[extract-sign [uncons] dip rest] inscribe
</code></pre>
<h3><code>check-gt</code></h3>
<pre><code>[check-gt [gt-bignum] [swap [not] dipd] [] ifte] inscribe
</code></pre>
<h3>Subtraction, at last...</h3>
<p>So now that we can compare digit lists to see if one is larger than the other
we can subtract (inverting the sign if necessary) much like we did addition:</p>
<pre><code>sub-bignums == [same-sign] [sub-like-bignums] [1 0 /] ifte
sub-like-bignums == extract-sign check-gt sub-digits cons
sub-digits == initial-carry sub-digits'
initial-carry == false rollup
both-empty == pop swap [] [1 swons] branch
one-empty == ditch-empty-list sub-carry-from-digits
both-non-empty == uncons-two [sub-with-carry] dipd
sub-digits == [both-empty] [one-empty] [both-non-empty] list-combiner-genrec
</code></pre>
<p>Which would expand into:</p>
<pre><code>sub-digits == [either-or-both-null]
[[both-null] [both-empty] [one-empty] ifte]
[both-non-empty]
[i cons]
genrec
sub-digits == [either-or-both-null] [[both-null] [both-empty] [ditch-empty-list sub-carry-from-digits] ifte] [uncons-two [sub-with-carry] dipd] [i cons] genrec
</code></pre>
<p>We just need to define the pieces.</p>
<h3><code>sub-with-carry</code></h3>
<p>We know we will never be subtracting a larger (absolute) number from a smaller (absolute) number (they might be equal)
so the carry flag will never be true <em>at the end of a digit list subtraction.</em></p>
<pre><code> carry a b sub-with-carry
------------------------------
(a-b-carry) new-carry
[sub-with-carry.0 - swap [] [--] branch] inscribe
[sub-with-carry.1 [base + base mod] [0 &lt;] cleave] inscribe
[sub-with-carry sub-with-carry.0 sub-with-carry.1] inscribe
</code></pre>
<h3><code>sub-carry-from-digits</code></h3>
<p>Should be easy to make modeled on <code>add-carry-to-digits</code>, another very simple recursive function.
The predicate, base case, and <code>R1</code> are the same:</p>
<pre><code>carry [n ...] sub-carry-from-digits
carry [n ...] [pop not] [popd] [R0] [i cons] genrec
</code></pre>
<p>That leaves the recursive branch:</p>
<pre><code>true [n ...] R0 [sub-carry-from-digits] i cons
</code></pre>
<p>-or-</p>
<pre><code>true [] R0 [sub-carry-from-digits] i cons
</code></pre>
<p><strong>Except</strong> that this latter case should should never happen when subtracting,
because we already made sure that we're only ever subtracting a number less than or equal to the, uh,
number we are subtracting from.</p>
<pre><code> true [a ...] R0 [sub-carry-from-digits] i cons
----------------------------------------------------------------
true 0 a sub-with-carry [...] [sub-carry-from-digits] i cons
------------------------------------------------------------------
(a-1) carry [...] [sub-carry-from-digits] i cons
</code></pre>
<p>It would work like this:</p>
<pre><code>true [a ...] R0
true [a ...] 0 swap uncons [sub-with-carry] dip
true 0 [a ...] uncons [sub-with-carry] dip
true 0 a [...] [sub-with-carry] dip
true 0 a sub-with-carry [...]
R0 == 0 swap uncons [sub-with-carry] dip
</code></pre>
<p>But there's a problem! This winds up subtracting <code>a</code> from 0 rather than the other way around:</p>
<pre><code>R0 == uncons 0 swap [sub-with-carry] dip
</code></pre>
<h3><code>sub-carry-from-digits</code></h3>
<pre><code>[sub-carry-from-digits.R0 uncons 0 swap [sub-with-carry] dip] inscribe
[sub-carry-from-digits [pop not] [popd] [sub-carry-from-digits.R0] [i cons] genrec] inscribe
</code></pre>
<p>Try it out:</p>
<pre><code>joy? clear false [3 2 1] sub-carry-from-digits
[3 2 1]
joy? clear true [0 1] sub-carry-from-digits
[9 0]
joy? clear true [3 2 1] sub-carry-from-digits
[2 2 1]
joy? clear true [0 0 1] sub-carry-from-digits
[9 9 0]
</code></pre>
<p>But what about those leading zeroes?</p>
<h3><code>cons-but-not-leading-zeroes</code> and <code>sub-carry-from-digits</code></h3>
<p>We could use a version of <code>cons</code> that refuses to put 0 onto an empty list?</p>
<pre><code>[cons-but-not-leading-zeroes [[bool] ii \/ not] [popd] [cons] ifte] inscribe
[sub-carry-from-digits [pop not] [popd] [sub-carry-from-digits.R0] [i cons-but-not-leading-zeroes] genrec] inscribe
</code></pre>
<p>Good enough:</p>
<pre><code>joy? clear true [0 1] sub-carry-from-digits
[9]
joy? clear true [0 0 1] sub-carry-from-digits
[9 9]
</code></pre>
<h1>======================================================</h1>
<h4><code>sub-carry</code></h4>
<pre><code>sub-carry == pop
</code></pre>
<p><code>Joy
[sub-like-bignums [uncons] dip rest check-gt sub-digits cons] inscribe
[sub-digits initial-carry sub-digits'] inscribe
[sub-digits'
[sub-carry-from-digits]
[swap pop]
[sub-with-carry]
build-two-list-combiner
genrec
] inscribe</code></p>
<p><code>Joy
clear
true [3 2 1] [6 5 4]</code></p>
<pre><code>true [3 2 1] [6 5 4]
</code></pre>
<p><code>Joy
check-gt initial-carry</code></p>
<pre><code>false false [6 5 4] [3 2 1]
</code></pre>
<p><code>Joy
sub-digits'</code></p>
<pre><code>false [3 3 3]
</code></pre>
<p><code>Joy
clear
12345 to-bignum 109 to-bignum</code></p>
<pre><code>[true 5 4 3 2 1] [true 9 0 1]
</code></pre>
<p><code>Joy
sub-like-bignums</code></p>
<pre><code>[true 6 3 2 2 1]
</code></pre>
<p><code>Joy
from-bignum</code></p>
<pre><code>12236
</code></pre>
<p><code>Joy
clear</code></p>
<h4><code>neg-bignum</code></h4>
<p><code>Joy
[neg-bignum [not] infra] inscribe</code></p>
<p><code>Joy
123</code></p>
<pre><code>123
</code></pre>
<p><code>Joy
to-bignum neg-bignum from-bignum</code></p>
<pre><code>-123
</code></pre>
<p><code>Joy
to-bignum neg-bignum from-bignum</code></p>
<pre><code>123
</code></pre>
<p><code>Joy
clear
[sub-bignums [same-sign] [sub-like-bignums] [neg-bignum add-like-bignums] ifte] inscribe
[add-bignums [same-sign] [add-like-bignums] [neg-bignum sub-like-bignums] ifte] inscribe</code></p>
<h2>Multiplication</h2>
<p>```Joy</p>
<p>```</p>
<h2>Appendix: Source Code</h2>
<pre><code>clear
[base 2147483648]
[ditch-empty-list [bool] [popd] [pop] ifte]
[bool-to-int [0] [1] branch]
[uncons-two [uncons] ii swapd]
[sandwich swap [cons] dip swoncat]
[digitalize [0 &lt;=] [pop []] [base divmod swap] [i cons] genrec]
[to-bignum [!-] [abs digitalize] cleave cons]
[prep rest 1 0 rolldown]
[from-bignum [next-digit] step popd]
[next-digit [increase-power] [accumulate-digit] clop popdd]
[increase-power popop base *]
[accumulate-digit rolldown * +]
[sign-int [first] [prep from-bignum] cleave]
[neg-if-necessary swap [neg] [] branch]
[from-bignum sign-int neg-if-necessary]
[add-with-carry _add-with-carry0 _add-with-carry1]
[_add-with-carry0 [bool-to-int] dipd + +]
[_add-with-carry1 base [mod] [&gt;=] clop]
[add-carry-to-digits [pop not] [popd] [actd.R0] [i cons] genrec]
[actd.R0 [bool] [actd.R0.then] [actd.R0.else] ifte]
[actd.R0.else popd 1 false rolldown]
[actd.R0.then 0 swap uncons [add-with-carry] dip]
[add-digits initial-carry add-digits']
[initial-carry false rollup]
[add-digits' [P] [THEN] [R0] [R1] genrec]
[P [bool] ii &amp; not]
[THEN [P'] [THEN'] [ELSE] ifte]
[R0 uncons-two [add-with-carry] dipd]
[R1 i cons]
[P' [bool] ii |]
[THEN' ditch-empty-list add-carry-to-digits]
[ELSE pop swap [] [1 swons] branch]
[same-sign [first] ii xor not]
[add-like-bignums [uncons] dip rest add-digits cons]
[add-bignums [same-sign] [add-like-bignums] [neg-bignum sub-like-bignums] ifte]
[build-two-list-combiner _btlc0 _btlc1 [i cons]]
[_btlc0.0 [[ditch-empty-list] swoncat] dip]
[_btlc0.1 [pop] swoncat]
[_btlc0.3 [_btlc0.0 _btlc0.1] dip]
[_btlc0.4 [uncons-two] [dipd] sandwich]
[_btlc0 _btlc0.3 _btlc0.4]
[_btlc1 [[ifte] ccons [P'] swons [P] swap] dip]
[carry [] [1 swons] branch]
[compare-pairs [bool not] [pop false] [[first [&gt;=] infrst] [pop true]] [[rest] swoncat ifte] genrec]
[xR1 uncons-two [unit cons swons] dipd]
[xP [bool] ii &amp; not]
[BASE [bool] [popop pop true] [[pop bool] [popop pop false] [popop compare-pairs] ifte] ifte]
[gt-bignum &lt;&lt;{} [xP] [BASE] [xR1] tailrec]
[check-gt [gt-bignum] [swap [not] dipd] [] ifte]
[sub-carry pop]
[sub-carry-from-digits [pop not] [popd] [_scfd_R0] [i cons-but-not-leading-zeroes] genrec] inscribe
[_scfd_R0 uncons 0 swap [sub-with-carry] dip] inscribe
[cons-but-not-leading-zeroes [P'] [cons] [popd] ifte]
[sub-with-carry _sub-with-carry0 _sub-with-carry1]
[_sub-with-carry0 rolldown bool-to-int [-] ii]
[_sub-with-carry1 [base + base mod] [0 &lt;] cleave]
[sub-like-bignums [uncons] dip rest check-gt sub-digits cons]
[sub-digits initial-carry sub-digits']
enstacken [inscribe] step
[add-carry-to-digits]
[swap carry]
[add-with-carry]
build-two-list-combiner
[genrec] ccons ccons
[add-digits'] swoncat
inscribe
[sub-carry-from-digits]
[swap sub-carry]
[sub-with-carry]
build-two-list-combiner
[genrec] ccons ccons
[sub-digits'] swoncat
inscribe
</code></pre>
<h3>notes</h3>
<p>So far I have three formats for Joy source:</p>
<ul>
<li><code>def.txt</code> is a list of definitions (UTF-8), one per line, with no special marks.</li>
<li><code>foo ≡ bar baz...</code> lines in the <code>joy.py</code> embedded definition text, because why not? (Sometimes I use <code>==</code> instead of <code></code> mostly because some tools can't handle the Unicode glyph. Like converting this notebook to PDF via LaTeX just omitted them.)</li>
<li><code>[name body] inscribe</code> Joy source code that literally defines new words in the dictionary at runtime. A text of those commands can be fed to the interpreter to customize it without any special processing (like the other two formats require.)</li>
</ul>
<p>So far I prefer the <code>def.txt</code> style but that makes it tricky to embed them automatically into the <code>joy.py</code> file.</p>
<h4>Refactoring</h4>
<p>We have <code>i cons</code> but that's pretty tight already, eh?</p>
<p>However, <code>[i cons] genrec</code> is an interesting combinator. It's almost <code>tailrec</code> with that <code>i</code> combinator for the recursion, but then <code>cons</code> means it's a list-builder (an <em>anamorphism</em> if you go for that sort of thing.)</p>
<pre><code>simple-list-builder == [i cons] genrec
</code></pre>
<p>And maybe:</p>
<pre><code>boolii == [bool] ii
both? == boolii &amp;
one-of? == boolii |
</code></pre>
<script>var joy_interpreter = Elm.Main.init({node: document.getElementById('joy_interpreter')});</script>
</body>
</html>