289 lines
4.7 KiB
ReStructuredText
289 lines
4.7 KiB
ReStructuredText
Advent of Code 2017
|
||
===================
|
||
|
||
December 1st
|
||
------------
|
||
|
||
[Given] a sequence of digits (your puzzle input) and find the sum of all
|
||
digits that match the next digit in the list. The list is circular, so
|
||
the digit after the last digit is the first digit in the list.
|
||
|
||
For example:
|
||
|
||
- 1122 produces a sum of 3 (1 + 2) because the first digit (1) matches
|
||
the second digit and the third digit (2) matches the fourth digit.
|
||
- 1111 produces 4 because each digit (all 1) matches the next.
|
||
- 1234 produces 0 because no digit matches the next.
|
||
- 91212129 produces 9 because the only digit that matches the next one
|
||
is the last digit, 9.
|
||
|
||
.. code:: ipython3
|
||
|
||
from notebook_preamble import J, V, define
|
||
|
||
I'll assume the input is a Joy sequence of integers (as opposed to a
|
||
string or something else.)
|
||
|
||
We might proceed by creating a word that makes a copy of the sequence
|
||
with the first item moved to the last, and zips it with the original to
|
||
make a list of pairs, and a another word that adds (one of) each pair to
|
||
a total if the pair matches.
|
||
|
||
::
|
||
|
||
AoC2017.1 == pair_up total_matches
|
||
|
||
Let's derive ``pair_up``:
|
||
|
||
::
|
||
|
||
[a b c] pair_up
|
||
-------------------------
|
||
[[a b] [b c] [c a]]
|
||
|
||
Straightforward (although the order of each pair is reversed, due to the
|
||
way ``zip`` works, but it doesn't matter for this program):
|
||
|
||
::
|
||
|
||
[a b c] dup
|
||
[a b c] [a b c] uncons swap
|
||
[a b c] [b c] a unit concat
|
||
[a b c] [b c a] zip
|
||
[[b a] [c b] [a c]]
|
||
|
||
.. code:: ipython3
|
||
|
||
define('pair_up dup uncons swap unit concat zip')
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 3] pair_up')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[[2 1] [3 2] [1 3]]
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 2 3] pair_up')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[[2 1] [2 2] [3 2] [1 3]]
|
||
|
||
|
||
Now we need to derive ``total_matches``. It will be a ``step`` function:
|
||
|
||
::
|
||
|
||
total_matches == 0 swap [F] step
|
||
|
||
Where ``F`` will have the pair to work with, and it will basically be a
|
||
``branch`` or ``ifte``.
|
||
|
||
::
|
||
|
||
total [n m] F
|
||
|
||
It will probably be easier to write if we dequote the pair:
|
||
|
||
::
|
||
|
||
total [n m] i F′
|
||
----------------------
|
||
total n m F′
|
||
|
||
Now ``F′`` becomes just:
|
||
|
||
::
|
||
|
||
total n m [=] [pop +] [popop] ifte
|
||
|
||
So:
|
||
|
||
::
|
||
|
||
F == i [=] [pop +] [popop] ifte
|
||
|
||
And thus:
|
||
|
||
::
|
||
|
||
total_matches == 0 swap [i [=] [pop +] [popop] ifte] step
|
||
|
||
.. code:: ipython3
|
||
|
||
define('total_matches 0 swap [i [=] [pop +] [popop] ifte] step')
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 3] pair_up total_matches')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
0
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 2 3] pair_up total_matches')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
2
|
||
|
||
|
||
Now we can define our main program and evaluate it on the examples.
|
||
|
||
.. code:: ipython3
|
||
|
||
define('AoC2017.1 pair_up total_matches')
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 1 2 2] AoC2017.1')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
3
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 1 1 1] AoC2017.1')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
4
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 3 4] AoC2017.1')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
0
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[9 1 2 1 2 1 2 9] AoC2017.1')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
9
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[9 1 2 1 2 1 2 9] AoC2017.1')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
9
|
||
|
||
|
||
::
|
||
|
||
pair_up == dup uncons swap unit concat zip
|
||
total_matches == 0 swap [i [=] [pop +] [popop] ifte] step
|
||
|
||
AoC2017.1 == pair_up total_matches
|
||
|
||
|
||
Now the paired digit is "halfway" round.
|
||
|
||
::
|
||
|
||
[a b c d] dup size 2 / [drop] [take reverse] cleave concat zip
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 3 4] dup size 2 / [drop] [take reverse] cleave concat zip')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[[3 1] [4 2] [1 3] [2 4]]
|
||
|
||
|
||
I realized that each pair is repeated...
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 3 4] dup size 2 / [drop] [take reverse] cleave zip')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[1 2 3 4] [[1 3] [2 4]]
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
define('AoC2017.1.extra dup size 2 / [drop] [take reverse] cleave zip swap pop total_matches 2 *')
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 1 2] AoC2017.1.extra')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
6
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 2 1] AoC2017.1.extra')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
0
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
J('[1 2 3 4 2 5] AoC2017.1.extra')
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
4
|
||
|
||
|
||
Refactor FTW
|
||
============
|
||
|
||
With Joy a great deal of the heuristics from Forth programming carry
|
||
over nicely. For example, refactoring into small, well-scoped commands
|
||
with mnemonic names...
|
||
|
||
::
|
||
|
||
rotate_seq == uncons swap unit concat
|
||
pair_up == dup rotate_seq zip
|
||
add_if_match == [=] [pop +] [popop] ifte
|
||
total_matches == [i add_if_match] step_zero
|
||
|
||
AoC2017.1 == pair_up total_matches
|
||
|
||
half_of_size == dup size 2 /
|
||
split_at == [drop] [take reverse] cleave
|
||
pair_up.extra == half_of_size split_at zip swap pop
|
||
|
||
AoC2017.1.extra == pair_up.extra total_matches 2 *
|