Thun/docs/html/FR.html

2606 lines
67 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html>
<head>
<meta name="generator" content=
"HTML Tidy for HTML5 for FreeBSD version 5.8.0">
<meta charset="utf-8">
<title></title>
</head>
<body>
<p>Version -10.0.0</p>
<p>Each function, combinator, or definition should be documented
here.</p>
<hr>
<h2>&</h2>
<p>See <a href="#and">and</a>.</p>
<hr>
<h2>&amp;&</h2>
<p>Combinator</p>
<p>Short-circuiting Boolean AND</p>
<p>Accept two quoted programs, run the first and expect a Boolean
value, if it's <code>true</code> pop it and run the second program
(which should also return a Boolean value) otherwise pop the second
program (leaving <code>false</code> on the stack.)</p>
<pre><code> [A] [B] &amp;&
---------------- true
B
[A] [B] &amp;&
---------------- false
false
</code></pre>
<h3>Definition</h3>
<pre><code>nulco [nullary [false]] dip branch
</code></pre>
<h3>Derivation</h3>
<p>TODO: this is derived in one of the notebooks I think, look it
up and link to it, or copy the content here.</p>
<h3>Discussion</h3>
<p>This is seldom useful, I suspect, but this way you have it.</p>
<h3>Crosslinks</h3>
<p><a href="#section-25">||</a></p>
<hr>
<h2>*</h2>
<p>See <a href="#mul">mul</a>.</p>
<hr>
<h2></h2>
<p>See <a href="#id">id</a>.</p>
<hr>
<h2>^</h2>
<p>See <a href="#xor">xor</a>.</p>
<hr>
<h2>=</h2>
<p>See <a href="#eq">eq</a>.</p>
<hr>
<h2>!=</h2>
<p>See <a href="#ne">ne</a>.</p>
<hr>
<h2>!-</h2>
<p>Function</p>
<p>Not negative.</p>
<pre><code> n !-
----------- n &lt; 0
false
n !-
---------- n &gt;= 0
true
</code></pre>
<h3>Definition</h3>
<pre><code>0 \&gt;=
</code></pre>
<h3>Discussion</h3>
<p>Return a Boolean value indicating if a number is greater than or
equal to zero.</p>
<hr>
<h2>&gt;</h2>
<p>See <a href="#gt">gt</a>.</p>
<hr>
<h2>&gt;=</h2>
<p>See <a href="#ge">ge</a>.</p>
<hr>
<h2>&gt;&gt;</h2>
<p>See <a href="#rshift">rshift</a>.</p>
<hr>
<h2>-</h2>
<p>See <a href="#sub">sub</a>.</p>
<hr>
<h2>--</h2>
<p>See <a href="#pred">pred</a>.</p>
<hr>
<h2>&lt;</h2>
<p>See <a href="#lt">lt</a>.</p>
<hr>
<h2>&lt;=</h2>
<p>See <a href="#le">le</a>.</p>
<hr>
<h2>&lt;&gt;</h2>
<p>See <a href="#ne">ne</a>.</p>
<hr>
<h2>\&lt;{}</h2>
<p>Function</p>
<pre><code> ... a &lt;{}
----------------
... [] a
</code></pre>
<h3>Definition</h3>
<pre><code>[] swap
</code></pre>
<h3>Discussion</h3>
<p>Tuck an empty list just under the first item on the stack.</p>
<h3>Crosslinks</h3>
<p><a href="#section-18">&lt;&lt;{}</a></p>
<hr>
<h2>&lt;&lt;</h2>
<p>See <a href="#lshift">lshift</a>.</p>
<hr>
<h2>\&lt;\&lt;{}</h2>
<p>Function</p>
<pre><code> ... b a &lt;{}
-----------------
... [] b a
</code></pre>
<h3>Definition</h3>
<pre><code>[] rollup
</code></pre>
<h3>Discussion</h3>
<p>Tuck an empty list just under the first two items on the
stack.</p>
<h3>Crosslinks</h3>
<p><a href="#section-16">&lt;{}</a></p>
<hr>
<h2>%</h2>
<p>See <a href="#mod">mod</a>.</p>
<hr>
<h2>+</h2>
<p>See <a href="#add">add</a>.</p>
<hr>
<h2>++</h2>
<p>See <a href="#succ">succ</a>.</p>
<hr>
<h2>?</h2>
<p>Function</p>
<p>Is the item on the top of the stack "truthy"?</p>
<h3>Definition</h3>
<blockquote>
<p><a href="#dup">dup</a> <a href="#bool">bool</a></p>
</blockquote>
<h3>Discussion</h3>
<p>You often want to test the truth value of an item on the stack
without consuming the item.</p>
<h3>Crosslinks</h3>
<p><a href="#bool">bool</a></p>
<hr>
<h2>/</h2>
<p>See <a href="#floordiv">floordiv</a>.</p>
<hr>
<h2>//</h2>
<p>See <a href="#floordiv">floordiv</a>.</p>
<hr>
<h2>/floor</h2>
<p>See <a href="#floordiv">floordiv</a>.</p>
<hr>
<h2>\|\|</h2>
<p>Combinator</p>
<p>Short-circuiting Boolean OR</p>
<h3>Definition</h3>
<blockquote>
<p><a href="#nulco">nulco</a> [<a href="#nullary">nullary</a>]
<a href="#dip">dip</a> [true] <a href="#branch">branch</a></p>
</blockquote>
<h3>Discussion</h3>
<p>Accept two quoted programs, run the first and expect a Boolean
value, if its <code>false</code> pop it and run the second program
(which should also return a Boolean value) otherwise pop the second
program (leaving <code>true</code> on the stack.)</p>
<pre><code> [A] [B] ||
---------------- A -&gt; false
B
[A] [B] ||
---------------- A -&gt; true
true
</code></pre>
<h3>Crosslinks</h3>
<p><a href="#section-1">&amp;&</a></p>
<hr>
<h2>abs</h2>
<p>Function</p>
<p>Return the absolute value of the argument.</p>
<h3>Definition</h3>
<blockquote>
<p><a href="#dup">dup</a> 0 &lt; [] [<a href="#neg">neg</a>]
<a href="#branch">branch</a></p>
</blockquote>
<hr>
<h2>add</h2>
<p>Basis Function</p>
<p>Add two numbers together: a + b.</p>
<hr>
<h2>anamorphism</h2>
<p>Combinator</p>
<p>Build a list of values from a generator program <code>G</code>
and a stopping predicate <code>P</code>.</p>
<pre><code> [P] [G] anamorphism
-----------------------------------------
[P] [pop []] [G] [dip swons] genrec
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[<a href="#pop">pop</a> []] <a href="#swap">swap</a> [<a href=
"#dip">dip</a> <a href="#swons">swons</a>] <a href=
"#genrec">genrec</a></p>
</blockquote>
<h3>Example</h3>
<p>The <code>range</code> function generates a list of the integers
from 0 to n - 1:</p>
<blockquote>
<p>[0 &lt;=] [-- dup] anamorphism</p>
</blockquote>
<h3>Discussion</h3>
<p>See the <a href=
"https://joypy.osdn.io/notebooks/Recursion_Combinators.html">Recursion
Combinators notebook</a>.</p>
<hr>
<h2>and</h2>
<p>Basis Function</p>
<p>Logical bit-wise AND.</p>
<h3>Crosslinks</h3>
<p><a href="#or">or</a> <a href="#xor">xor</a></p>
<hr>
<h2>app1</h2>
<p>"apply one"</p>
<p>Combinator</p>
<p>Given a quoted program on TOS and anything as the second stack
item run the program without disturbing the stack and replace the
two args with the first result of the program.</p>
<pre><code> ... x [Q] app1
---------------------------------
... [x ...] [Q] infra first
</code></pre>
<p>This is the same effect as the <a href="#unary">unary</a>
combinator.</p>
<h3>Definition</h3>
<blockquote>
<p><a href="#nullary">nullary</a> <a href="#popd">popd</a></p>
</blockquote>
<h3>Discussion</h3>
<p>Just a specialization of <code>nullary</code> really. Its
parallelizable cousins are more useful.</p>
<h3>Crosslinks</h3>
<p><a href="#app2">app2</a> <a href="#app3">app3</a> <a href=
"#appN">appN</a> <a href="#unary">unary</a></p>
<hr>
<h2>app2</h2>
<p>Combinator</p>
<p>Like <a href="#app1">app1</a> with two items.</p>
<pre><code> ... y x [Q] . app2
-----------------------------------
... [y ...] [Q] . infra first
[x ...] [Q] infra first
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[grba] [swap] [grba] [swap]] [dip] [[infrst]] [cons] [ii]</p>
</blockquote>
<h3>Discussion</h3>
<p>Unlike <a href="#app1">app1</a>, which is essentially an alias
for <a href="#unary">unary</a>, this function is not the same as
<a href="#binary">binary</a>. Instead of running one program using
exactly two items from the stack and pushing one result (as
<a href="#binary">binary</a> does) this function takes two items
from the stack and runs the program twice, separately for each of
the items, then puts both results onto the stack.</p>
<p>This is not currently implemented as parallel processes but it
can (and should) be done.</p>
<h3>Crosslinks</h3>
<p><a href="#app1">app1</a> <a href="#app3">app3</a> <a href=
"#appN">appN</a> <a href="#unary">unary</a></p>
<hr>
<h2>app3</h2>
<p>Combinator</p>
<p>Like [app1] with three items.</p>
<pre><code> ... z y x [Q] . app3
-----------------------------------
... [z ...] [Q] . infra first
[y ...] [Q] infra first
[x ...] [Q] infra first
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>3 [appN]</p>
</blockquote>
<h3>Discussion</h3>
<p>See [app2].</p>
<h3>Crosslinks</h3>
<p><a href="#app1">app1</a> <a href="#app2">app2</a> <a href=
"#appN">appN</a> <a href="#unary">unary</a></p>
<hr>
<h2>appN</h2>
<p>Combinator</p>
<p>Like [app1] with any number of items.</p>
<pre><code> ... xN ... x2 x1 x0 [Q] n . appN
--------------------------------------
... [xN ...] [Q] . infra first
...
[x2 ...] [Q] infra first
[x1 ...] [Q] infra first
[x0 ...] [Q] infra first
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[grabN]] [codi] [map] [disenstacken]</p>
</blockquote>
<h3>Discussion</h3>
<p>This function takes a quoted function <code>Q</code> and an
integer and runs the function that many times on that many stack
items. See also [app2].</p>
<h3>Crosslinks</h3>
<p><a href="#app1">app1</a> <a href="#app2">app2</a> <a href=
"#app3">app3</a> <a href="#unary">unary</a></p>
<hr>
<h2>at</h2>
<p>See <a href="#getitem">getitem</a>.</p>
<hr>
<h2>average</h2>
<p>Function</p>
<p>Compute the average of a list of numbers. (Currently broken
until I can figure out what to do about "numeric tower" in
Thun.)</p>
<h3>Definition</h3>
<blockquote>
<p>[[sum]] [[size]] [cleave] [/]</p>
</blockquote>
<h3>Discussion</h3>
<p>Theoretically this function would compute the sum and the size
in two separate threads, then divide. This works but a compiled
version would probably do better to sum and count the list once, in
one thread, eh?</p>
<p>As an exercise in Functional Programming in Joy it would be fun
to convert this into a catamorphism. See the <a href=
"https://joypy.osdn.io/notebooks/Recursion_Combinators.html">Recursion
Combinators notebook</a>.</p>
<hr>
<h2>b</h2>
<p>Combinator</p>
<p>Run two quoted programs</p>
<pre><code> [P] [Q] b
---------------
P Q
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[i]] [dip] [i]</p>
</blockquote>
<h3>Discussion</h3>
<p>This combinator may seem trivial but it comes in handy.</p>
<h3>Crosslinks</h3>
<p><a href="#dupdip">dupdip</a> <a href="#ii">ii</a></p>
<hr>
<h2>binary</h2>
<p>Combinator</p>
<p>Run a quoted program using exactly two stack values and leave
the first item of the result on the stack.</p>
<pre><code> ... y x [P] binary
-----------------------
... a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[unary] [popd]</p>
</blockquote>
<h3>Discussion</h3>
<p>Runs any other quoted function and returns its first result
while consuming exactly two items from the stack.</p>
<h3>Crosslinks</h3>
<p><a href="#nullary">nullary</a> <a href="#ternary">ternary</a>
<a href="#unary">unary</a></p>
<hr>
<h2>bool</h2>
<p>Basis Function</p>
<p>Convert the item on the top of the stack to a Boolean value.</p>
<h3>Discussion</h3>
<p>For integers 0 is <code>false</code> and any other number is
<code>true</code>; for lists the empty list is <code>false</code>
and all other lists are <code>true</code>.</p>
<h3>Crosslinks</h3>
<p>[not]</p>
<hr>
<h2>branch</h2>
<p>Basis Combinator</p>
<p>Use a Boolean value to select and run one of two quoted
programs.</p>
<pre><code> false [F] [T] branch
--------------------------
F
true [F] [T] branch
-------------------------
T
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rolldown] [choice] [i]</p>
</blockquote>
<h3>Discussion</h3>
<p>This is one of the fundamental operations (although it can be
defined in terms of [choice] as above). The more common
"if..then..else" construct [ifte] adds a predicate function that is
evaluated [nullary].</p>
<h3>Crosslinks</h3>
<p>[choice] [ifte] [select]</p>
<hr>
<h2>ccccons</h2>
<p>Function</p>
<pre><code> a b c d [...] ccccons
---------------------------
[a b c d ...]
</code></pre>
<p>Do [cons] four times.</p>
<h3>Definition</h3>
<blockquote>
<p>[ccons] [ccons]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[ccons] [cons] [times]</p>
<hr>
<h2>ccons</h2>
<p>Function</p>
<pre><code> a b [...] ccons
---------------------
[a b ...]
</code></pre>
<p>Do [cons] two times.</p>
<h3>Definition</h3>
<blockquote>
<p>[cons] [cons]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[cons] [ccons]</p>
<hr>
<h2>choice</h2>
<p>Basis Function</p>
<p>Use a Boolean value to select one of two items.</p>
<pre><code> a b false choice
----------------------
a
a b true choice
---------------------
b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[pop]] [[popd]] [branch]</p>
</blockquote>
<h3>Discussion</h3>
<p>It's a matter of taste whether you implement this in terms of
[branch] or the other way around.</p>
<h3>Crosslinks</h3>
<p>[branch] [select]</p>
<hr>
<h2>clear</h2>
<p>Basis Function</p>
<p>Clear everything from the stack.</p>
<h3>Definition</h3>
<blockquote>
<p>[stack] [bool] [[pop] [stack] [bool]] [loop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[stack] [swaack]</p>
<hr>
<h2>cleave</h2>
<p>Combinator</p>
<p>Run two programs in parallel, consuming one additional item, and
put their results on the stack.</p>
<pre><code> ... x [A] [B] cleave
------------------------
... a b
</code></pre>
<h3>Derivation</h3>
<blockquote>
<p>[fork] [popdd]</p>
</blockquote>
<h3>Example</h3>
<pre><code> 1 2 3 [+] [-] cleave
--------------------------
1 2 5 -1
</code></pre>
<h3>Discussion</h3>
<p>One of a handful of useful parallel combinators.</p>
<h3>Crosslinks</h3>
<p>[clop] [fork] [map]</p>
<hr>
<h2>clop</h2>
<p>Combinator</p>
<p>Run two programs in parallel, consuming two additional items,
and put their results on the stack.</p>
<pre><code> ... x y [A] [B] clop
--------------------------
... a b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[cleave] [popdd]</p>
</blockquote>
<h3>Discussion</h3>
<p>Like [cleave] but consumes an additional item from the
stack.</p>
<pre><code> 1 2 3 4 [+] [-] clop
--------------------------
1 2 7 -1
</code></pre>
<h3>Crosslinks</h3>
<p>[cleave] [fork] [map]</p>
<hr>
<h2>cmp</h2>
<p>Combinator</p>
<p>Take two values and three quoted programs on the stack and run
one of the three depending on the results of comparing the two
values.</p>
<pre><code> a b [G] [E] [L] cmp
------------------------- a &gt; b
G
a b [G] [E] [L] cmp
------------------------- a = b
E
a b [G] [E] [L] cmp
------------------------- a &lt; b
L
</code></pre>
<h3>Discussion</h3>
<p>This is useful sometimes, and you can [dup] or [dupd] with two
quoted programs to handle the cases when you just want to deal with
[&lt;=] or [&gt;=] and not all three possibilities, e.g.:</p>
<pre><code>[G] [EL] dup cmp
[GE] [L] dupd cmp
</code></pre>
<p>Or even:</p>
<pre><code>[GL] [E] over cmp
</code></pre>
<h3>Crosslinks</h3>
<p>TODO: link to tree notebooks where this was used.</p>
<hr>
<h2>codi</h2>
<p>Combinator</p>
<p>Take a quoted program from the stack, [cons] the next item onto
it, then [dip] the whole thing under what was the third item on the
stack.</p>
<pre><code> a b [F] . codi
--------------------
b . F a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[cons] [dip]</p>
</blockquote>
<h3>Discussion</h3>
<p>This is one of those weirdly specific functions that turns out
to be useful in a few places.</p>
<h3>Crosslinks</h3>
<p>[appN] [codireco]</p>
<hr>
<h2>codireco</h2>
<p>Combinator</p>
<p>This is part of the [make_generator] function. You would not use
this combinator directly.</p>
<h3>Definition</h3>
<blockquote>
<p>[codi] [reco]</p>
</blockquote>
<h3>Discussion</h3>
<p>See [make_generator] and the <a href=
"https://joypy.osdn.io/notebooks/Generator_Programs.html#an-interesting-variation">
"Using <code>x</code> to Generate Values" notebook</a> as well as
<a href=
"https://www.kevinalbrecht.com/code/joy-mirror/j05cmp.html">Recursion
Theory and Joy</a> by Manfred von Thun.</p>
<h3>Crosslinks</h3>
<p>[make_generator]</p>
<hr>
<h2>concat</h2>
<p>Function</p>
<p>Concatinate two lists.</p>
<pre><code> [a b c] [d e f] concat
----------------------------
[a b c d e f]
</code></pre>
<h3>Crosslinks</h3>
<p>[first] [first<em>two] [flatten] [fourth] [getitem] [remove]
[rest] [reverse] [rrest] [second] [shift] [shunt] [size] [sort]
[split</em>at] [split_list] [swaack] [third] [zip]</p>
<hr>
<h2>cond</h2>
<p>Combinator</p>
<p>This combinator works like a case statement. It expects a single
quote on the stack that must contain zero or more condition quotes
and a default quote. Each condition quote should contain a quoted
predicate followed by the function expression to run if that
predicate returns <code>true</code>. If no predicates return
<code>true</code> the default function runs.</p>
<pre><code>[
[ [Predicate0] Function0 ]
[ [Predicate1] Function1 ]
...
[ [PredicateN] FunctionN ]
[Default]
]
cond
</code></pre>
<h3>Discussion</h3>
<p>It works by rewriting into a chain of nested [ifte]{.title-ref}
expressions, e.g.:</p>
<pre><code> [[[B0] T0] [[B1] T1] [D]] cond
-----------------------------------------
[B0] [T0] [[B1] [T1] [D] ifte] ifte
</code></pre>
<h3>Crosslinks</h3>
<p>[ifte]</p>
<hr>
<h2>cons</h2>
<p>Basis Function</p>
<p>Given an item and a list, append the item to the list to make a
new list.</p>
<pre><code> a [...] cons
------------------
[a ...]
</code></pre>
<h3>Discussion</h3>
<p>Cons is a <a href=
"https://en.wikipedia.org/wiki/Cons#Lists">venerable old function
from Lisp</a>. Its inverse operation is [uncons].</p>
<h3>Crosslinks</h3>
<p>[uncons]</p>
<hr>
<h2>dinfrirst</h2>
<p>Combinator</p>
<p>Specialist function (that means I forgot what it does and
why.)</p>
<h3>Definition</h3>
<blockquote>
<p>[dip] [infrst]</p>
</blockquote>
<hr>
<h2>dip</h2>
<p>Basis Combinator</p>
<p>The <code>dip</code> combinator expects a quoted program on the
stack and below it some item, it hoists the item into the
expression and runs the program on the rest of the stack.</p>
<pre><code> ... x [Q] . dip
---------------------
... . Q x
</code></pre>
<h3>Discussion</h3>
<p>This along with [infra] are enough to update any datastructure.
See the <a href=
"https://joypy.osdn.io/notebooks/Zipper.html">"Traversing
Datastructures with Zippers" notebook</a>.</p>
<p>Note that the item that was on the top of the stack
(<code>x</code> in the example above) will not be treated specially
by the interpreter when it is reached again. This is something of a
footgun. My advice is to avoid putting bare unquoted symbols onto
the stack, but then you can't use symbols as "atoms" and also use
<code>dip</code> and <code>infra</code> to operate on compound
datastructures with atoms in them. This is a kind of side-effect of
the Continuation-Passing Style. The <code>dip</code> combinator
could "set aside" the item and replace it after running
<code>Q</code> but that means that there is an "extra space" where
the item resides while <code>Q</code> runs. One of the nice things
about CPS is that the whole state is recorded in the stack and
pending expression (not counting modifications to the
dictionary.)</p>
<h3>Crosslinks</h3>
<p>[dipd] [dipdd] [dupdip] [dupdipd] [infra]</p>
<hr>
<h2>dipd</h2>
<p>Combinator</p>
<p>Like [dip] but expects two items.</p>
<pre><code> ... y x [Q] . dipd
-------------------------
... . Q y x
</code></pre>
<h3>Discussion</h3>
<p>See [dip].</p>
<h3>Crosslinks</h3>
<p>[dip] [dipdd] [dupdip] [dupdipd] [infra]</p>
<hr>
<h2>dipdd</h2>
<p>Combinator</p>
<p>Like [dip] but expects three items. :</p>
<pre><code> ... z y x [Q] . dip
-----------------------------
... . Q z y x
</code></pre>
<h3>Discussion</h3>
<p>See [dip].</p>
<h3>Crosslinks</h3>
<p>[dip] [dipd] [dupdip] [dupdipd] [infra]</p>
<hr>
<h2>disenstacken</h2>
<p>Function</p>
<p>The <code>disenstacken</code> function expects a list on top of
the stack and makes that the stack discarding the rest of the
stack.</p>
<pre><code> 1 2 3 [4 5 6] disenstacken
--------------------------------
6 5 4
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[clear]] [dip] [reverse] <a href="#unstack">unstack</a></p>
</blockquote>
<h3>Discussion</h3>
<p>Note that the order of the list is not changed, it just looks
that way because the stack is printed with the top on the right
while lists are printed with the top or head on the left.</p>
<h3>Crosslinks</h3>
<p>[enstacken] [stack] <a href="#unstack">unstack</a></p>
<hr>
<h2>div</h2>
<p>See <a href="#floordiv">floordiv</a>.</p>
<hr>
<h2>divmod</h2>
<p>Function</p>
<pre><code> x y divmod
------------------
q r
(x/y) (x%y)
</code></pre>
<p>Invariant: <code>qy + r = x</code>.</p>
<h3>Definition</h3>
<blockquote>
<p>[[floordiv]] [[mod]] [clop]</p>
</blockquote>
<hr>
<h2>down<em>to</em>zero</h2>
<p>Function</p>
<p>Given a number greater than zero put all the Natural numbers
(including zero) less than that onto the stack.</p>
<h3>Example</h3>
<pre><code> 3 down_to_zero
--------------------
3 2 1 0
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[0 &gt;] [[dup] [--]] [while]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[range]</p>
<hr>
<h2>drop</h2>
<p>Function</p>
<p>Expects an integer and a quote on the stack and returns the
quote with n items removed off the top.</p>
<h3>Example</h3>
<pre><code> [a b c d] 2 drop
----------------------
[c d]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[rest]] [times]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[take]</p>
<hr>
<h2>dup</h2>
<p>Basis Function</p>
<p>"Dup"licate the top item on the stack.</p>
<pre><code> a dup
-----------
a a
</code></pre>
<h3>Crosslinks</h3>
<p>[dupd] [dupdd] [dupdip] [dupdipd]</p>
<hr>
<h2>dupd</h2>
<p>Function</p>
<p>[dup] the second item down on the stack.</p>
<pre><code> a b dupd
--------------
a a b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[dup]] [dip]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[dup] [dupdd] [dupdip] [dupdipd]</p>
<hr>
<h2>dupdd</h2>
<p>Function</p>
<p>[dup] the third item down on the stack.</p>
<pre><code> a b c dupdd
-----------------
a a b c
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[dup]] [dipd]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[dup] [dupd] [dupdip] [dupdipd]</p>
<hr>
<h2>dupdip</h2>
<p>Combinator</p>
<p>Apply a function <code>F</code> and [dup] the item under it on
the stack.</p>
<pre><code> a [F] dupdip
------------------
a F a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[dupd] [dip]</p>
</blockquote>
<h3>Derivation</h3>
<pre><code>a [F] dupdip
a [F] dupd dip
a [F] [dup] dip dip
a dup [F] dip
a a [F] dip
a F a
</code></pre>
<h3>Discussion</h3>
<p>A very common and useful combinator.</p>
<h3>Crosslinks</h3>
<p>[dupdipd]</p>
<hr>
<h2>dupdipd</h2>
<p>Combinator</p>
<p>Run a copy of program <code>F</code> under the next item down on
the stack.</p>
<pre><code> a [F] dupdipd
-------------------
F a [F]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[dup] [dipd]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[dupdip]</p>
<hr>
<h2>enstacken</h2>
<p>Function</p>
<p>Put the stack onto the stack replacing the contents of the
stack.</p>
<pre><code> ... a b c enstacken
-------------------------
[c b a ...]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[stack] [[clear]] [dip]</p>
</blockquote>
<h3>Discussion</h3>
<p>This is a destructive version of [stack]. See the note under
[disenstacken] about the apparent but illusory reversal of the
stack.</p>
<h3>Crosslinks</h3>
<p>[stack] [unstack] [disenstacken]</p>
<hr>
<h2>eq</h2>
<p>Basis Function</p>
<p>Compare the two items on the top of the stack for equality and
replace them with a Boolean value.</p>
<pre><code> a b eq
-------------
Boolean
(a = b)
</code></pre>
<h3>Crosslinks</h3>
<p>[cmp] [ge] [gt] [le] [lt] [ne]</p>
<hr>
<h2>first</h2>
<p>Function</p>
<p>Replace a list with its first item.</p>
<pre><code> [a ...]
--------------
a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[uncons] [pop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[second] [third] [fourth] [rest]</p>
<hr>
<h2>first_two</h2>
<p>Function</p>
<p>Replace a list with its first two items.</p>
<pre><code> [a b ...] first_two
-------------------------
a b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[uncons] [first]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[first] [second] [third] [fourth] [rest]</p>
<hr>
<h2>flatten</h2>
<p>Function</p>
<p>Given a list of lists, concatinate them.</p>
<h3>Example</h3>
<pre><code> [[1 2] [3 [4] 5] [6 7]] flatten
-------------------------------------
[1 2 3 [4] 5 6 7]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[\&lt;{}] [[concat]] [step]</p>
</blockquote>
<h3>Discussion</h3>
<p>Note that only one "level" of lists is flattened. In the example
above <code>[4]</code> is not unquoted.</p>
<h3>Crosslinks</h3>
<p>[concat] [first] [first<em>two] [fourth] [getitem] [remove]
[rest] [reverse] [rrest] [second] [shift] [shunt] [size] [sort]
[split</em>at] [split_list] [swaack] [third] [zip]</p>
<hr>
<h2>floor</h2>
<p>Basis Function</p>
<p>Return the largest integer \&lt;= x.</p>
<h3>Discussion</h3>
<p>This function doesn't make sense (yet) to have because there are
(as yet) only integers in the system.</p>
<hr>
<h2>floordiv</h2>
<p>Basis Function</p>
<p>I don't know why this is called "floor" div, I think it rounds
its result down (not towards zero or up.)</p>
<pre><code> a b floordiv
------------------
(a/b)
</code></pre>
<h3>Discussion</h3>
<p>All the division commands need to be revisited when the "numeric
tower" for Thun gets nailed down.</p>
<h3>Crosslinks</h3>
<p>[divmod]</p>
<hr>
<h2>fork</h2>
<p>Combinator</p>
<p>Run two quoted programs in parallel and replace them with their
results.</p>
<pre><code> ... [F] [G] fork
----------------------
... f g
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[i]] [app2]</p>
</blockquote>
<h3>Discussion</h3>
<p>The basic parallelism combinator, the two programs are run
independently.</p>
<h3>Crosslinks</h3>
<p>[cleave] [clop] [map]</p>
<hr>
<h2>fourth</h2>
<p>Function</p>
<p>Replace a list with its fourth item.</p>
<pre><code> [a b c d ...] fourth
--------------------------
d
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rest] [third]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[first] [second] [third] [rest]</p>
<hr>
<h2>gcd</h2>
<p>Function</p>
<p>Take two integers from the stack and replace them with their
Greatest Common Denominator.</p>
<h3>Definition</h3>
<blockquote>
<p>true [[tuck] [mod] [dup] 0 [&gt;]] [loop] [pop]</p>
</blockquote>
<h3>Discussion</h3>
<p>Euclid's Algorithm</p>
<hr>
<h2>gcd2</h2>
<p>Function</p>
<p>Compiled GCD function.</p>
<h3>Discussion</h3>
<p>See [gcd].</p>
<h3>Crosslinks</h3>
<p>[gcd]</p>
<hr>
<h2>ge</h2>
<p>Basis Function</p>
<p>Greater-than-or-equal-to comparison of two numbers.</p>
<pre><code> a b ge
--------------
Boolean
(a &gt;= b)
</code></pre>
<h3>Crosslinks</h3>
<p>[cmp] [eq] [gt] [le] [lt] [ne]</p>
<hr>
<h2>genrec</h2>
<p>Combinator</p>
<p><strong>Gen</strong>eral <strong>Rec</strong>ursion
Combinator.</p>
<pre><code> [if] [then] [rec1] [rec2] genrec
---------------------------------------------------------------------
[if] [then] [rec1 [[if] [then] [rec1] [rec2] genrec] rec2] ifte
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[[genrec]] [ccccons]] [nullary] [swons] [concat] [ifte]</p>
</blockquote>
<p>(Note that this definition includes the <code>genrec</code>
symbol itself, it is self-referential. This is possible because the
definition machinery does not check that symbols in defs are in the
dictionary. <code>genrec</code> is the only self-referential
definition.)</p>
<h3>Discussion</h3>
<p>See the <a href=
"https://joypy.osdn.io/notebooks/Recursion_Combinators.html">Recursion
Combinators notebook</a>.</p>
<p>From <a href=
"https://www.kevinalbrecht.com/code/joy-mirror/j05cmp.html">"Recursion
Theory and Joy"</a> by Manfred von Thun:</p>
<blockquote>
<p>"The genrec combinator takes four program parameters in addition
to whatever data parameters it needs. Fourth from the top is an
if-part, followed by a then-part. If the if-part yields true, then
the then-part is executed and the combinator terminates. The other
two parameters are the rec1-part and the rec2-part. If the if-part
yields false, the rec1-part is executed. Following that the four
program parameters and the combinator are again pushed onto the
stack bundled up in a quoted form. Then the rec2-part is executed,
where it will find the bundled form. Typically it will then execute
the bundled form, either with i or with app2, or some other
combinator."</p>
</blockquote>
<p>The way to design one of these is to fix your base case
<code>[then]</code> and the test <code>[if]</code>, and then treat
<code>rec1</code> and <code>rec2</code> as an else-part
"sandwiching" a quotation of the whole function.</p>
<p>For example, given a (general recursive) function
<code>F</code>:</p>
<pre><code>F == [I] [T] [R1] [R2] genrec
</code></pre>
<p>If the <code>[I]</code> if-part fails you must derive
<code>R1</code> and <code>R2</code> from: :</p>
<pre><code>... R1 [F] R2
</code></pre>
<p>Just set the stack arguments in front, and figure out what
<code>R1</code> and <code>R2</code> have to do to apply the quoted
<code>[F]</code> in the proper way. In effect, the
<code>genrec</code> combinator turns into an [ifte] combinator with
a quoted copy of the original definition in the else-part:</p>
<pre><code>F == [I] [T] [R1] [R2] genrec
== [I] [T] [R1 [F] R2] ifte
</code></pre>
<p>Tail recursive functions are those where <code>R2</code> is the
<code>i</code> combinator:</p>
<pre><code>P == [I] [T] [R] tailrec
== [I] [T] [R [P] i] ifte
== [I] [T] [R P] ifte
</code></pre>
<h3>Crosslinks</h3>
<p>[anamorphism] [tailrec] [x]</p>
<hr>
<h2>getitem</h2>
<p>Function</p>
<p>Expects an integer and a quote on the stack and returns the item
at the nth position in the quote counting from 0.</p>
<h3>Example</h3>
<pre><code> [a b c d] 2 getitem
-------------------------
c
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[drop] [first]</p>
</blockquote>
<h3>Discussion</h3>
<p>If the number isn't a valid index into the quote
<code>getitem</code> will cause some sort of problem (the exact
nature of which is implementation-dependant.)</p>
<h3>Crosslinks</h3>
<p>[concat] [first] [first<em>two] [flatten] [fourth] [remove]
[rest] [reverse] [rrest] [second] [shift] [shunt] [size] [sort]
[split</em>at] [split_list] [swaack] [third] [zip]</p>
<hr>
<h2>grabN</h2>
<p>Function</p>
<p>Expect a number on the top of the satck and put that many items
from uner it onto a new list.</p>
<h3>Example</h3>
<pre><code> a b c d e 3 grabN
-----------------------
a b [c d e]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[\&lt;{}] [[cons]] [times]</p>
</blockquote>
<hr>
<h2>grba</h2>
<p>Function</p>
<p>A weird function used in [app2] that does this:</p>
<pre><code> ... 1 2 3 4 5 grba
-------------------------------
... 1 2 3 [4 3 2 1 ...] 5
</code></pre>
<p>It grabs the stack under the top item, and substitutes it for
the second item down on the stack.</p>
<h3>Definition</h3>
<blockquote>
<p>[[stack] [popd]] [dip]</p>
</blockquote>
<h3>Discussion</h3>
<p>This function "grabs" an item from the stack along with a copy
of the stack. It's part of the [app2] definition.</p>
<h3>Crosslinks</h3>
<p>[app2]</p>
<hr>
<h2>gt</h2>
<p>Basis Function</p>
<p>Greater-than comparison of two numbers.</p>
<pre><code> a b gt
--------------
Boolean
(a &gt; b)
</code></pre>
<h3>Crosslinks</h3>
<p>[cmp] [eq] [ge] [le] [lt] [ne]</p>
<hr>
<h2>help</h2>
<p>Function</p>
<p>Accepts a quoted symbol on the top of the stack and prints its
documentation.</p>
<pre><code> [foo] help
----------------
</code></pre>
<h3>Discussion</h3>
<p>Technically this is equivalent to <code>pop</code>, but it will
only work if the item on the top of the stack is a quoted
symbol.</p>
<hr>
<h2>hypot</h2>
<p>Function</p>
<pre><code> x y hypot
---------------------------
sqrt(sqr(x) + sqr(y))
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[sqr]] [ii] [+] [sqrt]</p>
</blockquote>
<h3>Discussion</h3>
<p>This is another function that has to wait on the numeric
tower.</p>
<h3>Crosslinks</h3>
<p>[sqrt]</p>
<hr>
<h2>i</h2>
<p>Basis Combinator</p>
<p>Append a quoted expression onto the pending expression.</p>
<pre><code> [Q] . i
-------------
. Q
</code></pre>
<h3>Discussion</h3>
<p>This is a fundamental combinator. It is used in all kinds of
places. For example, the [x] combinator can be defined as <code>dup
i</code>.</p>
<hr>
<h2>id</h2>
<p>Basis Function</p>
<p>The identity function.</p>
<h3>Discussion</h3>
<p>Does nothing. It's kind of a mathematical thing, but it
occasionally comes in handy.</p>
<hr>
<h2>ifte</h2>
<p>Combinator</p>
<p>If-Then-Else combinator, a common and convenient specialization
of [branch].</p>
<pre><code> [if] [then] [else] ifte
---------------------------------------
[if] nullary [else] [then] branch
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[nullary]] [dipd] [swap] [branch]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[branch] [loop] [while]</p>
<hr>
<h2>ii</h2>
<p>Combinator</p>
<p>Take a quoted program from the stack and run it twice, first
under the top item, then again with the top item.</p>
<pre><code>... a [Q] ii
------------------
... Q a Q
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[dip]] [dupdip] [i]</p>
</blockquote>
<h3>Example</h3>
<p>It's a little tricky to understand how this works so here's an
example trace:</p>
<pre><code> 1 2 3 4 [++] • [dip] dupdip i
1 2 3 4 [++] [dip] • dupdip i
1 2 3 4 [++] • dip [++] i
1 2 3 • ++ 4 [++] i
1 2 4 • 4 [++] i
1 2 4 4 • [++] i
1 2 4 4 [++] • i
1 2 4 4 • ++
1 2 4 5 •
</code></pre>
<h3>Discussion</h3>
<p>In some cases (like the example above) this is the same effect
as using [app2] but most of the time it's not:</p>
<pre><code> 1 2 3 4 [+] ii
--------------------
1 9
1 2 3 4 [+] app2
----------------------
1 2 5 6
</code></pre>
<h3>Crosslinks</h3>
<p>[app2] [b]</p>
<hr>
<h2>infra</h2>
<p>Combinator</p>
<p>Accept a quoted program and a list on the stack and run the
program with the list as its stack. Does not affect the stack
(below the list.)</p>
<pre><code> ... x y z [a b c] [Q] infra
---------------------------------
c b a Q [z y x ...] swaack
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[swons] [swaack] [[i]] [dip] [swaack]</p>
</blockquote>
<h3>Discussion</h3>
<p>This is one of the more useful combinators. It allows a quoted
expression to serve as a stack for a program, effectively running
it in a kind of "pocket universe". If the list represents a
datastructure then <code>infra</code> lets you work on its internal
structure.</p>
<h3>Crosslinks</h3>
<p><a href="#swaack">swaack</a></p>
<hr>
<h2>infrst</h2>
<p>Combinator</p>
<p>Does [infra] and then extracts the [first] item from the
resulting list.</p>
<h3>Definition</h3>
<blockquote>
<p>[infra] [first]</p>
</blockquote>
<hr>
<h2>inscribe</h2>
<p>Create a new Joy function definition in the Joy dictionary. A
definition is given as a quote with a name followed by a Joy
expression.</p>
<h3>Example</h3>
<pre><code>[sqr dup mul] inscribe
</code></pre>
<h3>Discussion</h3>
<p>This is the only function that modifies the dictionary. It's
provided as a convenience, for tinkering with new definitions
before entering them into the <code>defs.txt</code> file. It can be
abused, which you should avoid unless you know what you're
doing.</p>
<hr>
<h2>le</h2>
<p>Basis Function</p>
<p>Less-Than-or-Equal-to comparison of the two items on the top of
the stack, replacing them with a Boolean value.</p>
<pre><code> a b le
-------------
Boolean
(a &lt;= b)
</code></pre>
<h3>Crosslinks</h3>
<p>[cmp] [eq] [ge] [gt] [lt] [ne]</p>
<hr>
<h2>loop</h2>
<p>Basis Combinator</p>
<p>Expect a quoted program <code>Q</code> and a Boolean value on
the stack. If the value is false discard the quoted program,
otherwise run a copy of <code>Q</code> and <code>loop</code>
again.</p>
<pre><code> false [Q] loop
--------------------
true [Q] . loop
--------------------------
. Q [Q] loop
</code></pre>
<h3>Discussion</h3>
<p>This, along with [branch] and [fork], is one of the four main
combinators of all programming. The fourth, sequence, is implied by
juxtaposition. That is to say, in Joy <code>F G</code> is like
<code>G(F(...))</code> in a language bassed on function
application. Or again, to quote the <a href=
"https://en.wikipedia.org/wiki/Joy_(programming_language">Joy
Wikipedia entry</a>#Mathematical_purity),</p>
<blockquote>
<p>In Joy, the meaning function is a homomorphism from the
syntactic monoid onto the semantic monoid. That is, the syntactic
relation of concatenation of symbols maps directly onto the
semantic relation of composition of functions.</p>
</blockquote>
<p>Anyway, [branch], [fork], amd [loop] are the fundamental
combinators in Joy. Just as [branch] has it's more common and
convenient form [ifte], [loop] has [while].</p>
<h3>Crosslinks</h3>
<p>[branch] [fork] [while]</p>
<hr>
<h2>lshift</h2>
<p>Basis Function</p>
<p><a href="https://en.wikipedia.org/wiki/Logical_shift">Logical
Left-Shift</a></p>
<pre><code> a n lshift
----------------
(a×2ⁿ)
</code></pre>
<h3>Crosslinks</h3>
<p>[rshift]</p>
<hr>
<h2>lt</h2>
<p>Basis Function</p>
<p>Less-Than comparison of the two items on the top of the stack,
replacing them with a Boolean value.</p>
<pre><code> a b lt
-------------
Boolean
(a &lt; b)
</code></pre>
<h3>Crosslinks</h3>
<p>[cmp] [eq] [ge] [gt] [le] [ne]</p>
<hr>
<h2>make_generator</h2>
<p>Function</p>
<p>Given an initial state value and a quoted generator function
build a generator quote.</p>
<pre><code> state [generator function] make_generator
-----------------------------------------------
[state [generator function] codireco]
</code></pre>
<h3>Example</h3>
<pre><code> 230 [dup ++] make_generator
---------------------------------
[230 [dup ++] codireco]
</code></pre>
<p>And then:</p>
<pre><code> [230 [dup ++] codireco] 5 [x] times pop
---------------------------------------------
230 231 232 233 234
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[codireco]] [ccons]</p>
</blockquote>
<h3>Discussion</h3>
<p>See the <a href=
"https://joypy.osdn.io/notebooks/Generator_Programs.html#an-interesting-variation">
"Using <code>x</code> to Generate Values" notebook</a>.</p>
<h3>Crosslinks</h3>
<p>[codireco]</p>
<hr>
<h2>map</h2>
<p>Combinator</p>
<p>Given a list of items and a quoted program run the program for
each item in the list (with the rest of the stack) and replace the
old list and the program with a list of the results.</p>
<h3>Example</h3>
<pre><code> 5 [1 2 3] [++ *] map
--------------------------
5 [10 15 20]
</code></pre>
<h3>Discussion</h3>
<p>This is a common operation in many languages. In Joy it can be a
parallelism combinator due to the "pure" nature of the
language.</p>
<h3>Crosslinks</h3>
<p>[app1] [app2] [app3] <a href="#appn">appN</a> [fork]</p>
<hr>
<h2>max</h2>
<p>Basis Function</p>
<p>Given a list find the maximum.</p>
<h3>Example</h3>
<pre><code> [1 2 3 4] max
-------------------
4
</code></pre>
<h3>Crosslinks</h3>
<p>[min] [size] [sum]</p>
<hr>
<h2>min</h2>
<p>Basis Function</p>
<p>Given a list find the minimum.</p>
<h3>Example</h3>
<pre><code> [1 2 3 4] min
-------------------
1
</code></pre>
<h3>Crosslinks</h3>
<p>[max] [size] [sum]</p>
<hr>
<h2>mod</h2>
<p>Basis Function</p>
<p>Return the remainder of <code>a</code> divided by
<code>b</code>.</p>
<pre><code> a b mod
-------------
(a%b)
</code></pre>
<h3>Crosslinks</h3>
<p>[divmod] [mul]</p>
<hr>
<h2>modulus</h2>
<p>See <a href="#mod">mod</a>.</p>
<hr>
<h2>mul</h2>
<p>Basis Function</p>
<p>Multiply two numbers.</p>
<pre><code> a b mul
-------------
(a×b)
</code></pre>
<h3>Crosslinks</h3>
<p>[div] [product]</p>
<hr>
<h2>ne</h2>
<p>Basis Function</p>
<p>Not-Equal comparison of the two items on the top of the stack,
replacing them with a Boolean value.</p>
<pre><code> a b ne
-------------
Boolean
(a = b)
</code></pre>
<h3>Crosslinks</h3>
<p>[cmp] [eq] [ge] [gt] [le] [lt]</p>
<hr>
<h2>neg</h2>
<p>Function</p>
<p>Invert the sign of a number.</p>
<pre><code> a neg
-----------
-a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>0 [swap] [-]</p>
</blockquote>
<hr>
<h2>not</h2>
<p>Function</p>
<p>Like [bool] but convert the item on the top of the stack to the
inverse Boolean value.</p>
<pre><code> true not
--------------
false
false not
---------------
true
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[bool] [true] [false] [branch]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[bool]</p>
<hr>
<h2>nulco</h2>
<p>Function</p>
<p>Take the item on the top of the stack and [cons] it onto
<code>[nullary]</code>.</p>
<pre><code> [F] nulco
-------------------
[[F] nullary]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[nullary]] [cons]</p>
</blockquote>
<h3>Discussion</h3>
<p>Helper function for [\|\|] and [&amp;&amp;].</p>
<h3>Crosslinks</h3>
<p>[&amp;&amp;] [\|\|]</p>
<hr>
<h2>nullary</h2>
<p>Combinator</p>
<p>Run a quoted program without using any stack values and leave
the first item of the result on the stack.</p>
<pre><code> ... [P] nullary
---------------------
... a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[stack]] [dip] [infra] [first]</p>
</blockquote>
<h3>Example</h3>
<pre><code>... [P] nullary
... [P] [stack] dip infra first
... stack [P] infra first
... [...] [P] infra first
... [a ...] first
... a
</code></pre>
<h3>Discussion</h3>
<p>A very useful function that runs any other quoted function and
returns it's first result without disturbing the stack (under the
quoted program.)</p>
<h3>Crosslinks</h3>
<p><a href="#unary">unary</a> <a href="#binary">binary</a> <a href=
"#ternary">ternary</a></p>
<hr>
<h2>of</h2>
<p>Function</p>
<p>Like [getitem] but [swap]s the order of arguments.</p>
<h3>Example</h3>
<pre><code> 2 [a b c d] of
--------------------
c
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[swap] [getitem]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[getitem]</p>
<hr>
<h2>or</h2>
<p>Basis Function</p>
<p>Logical bit-wise OR.</p>
<h3>Crosslinks</h3>
<p>[and] [xor]</p>
<hr>
<h2>over</h2>
<p>Function</p>
<p>[dup] the second item on the stack <code>over</code> the
first.</p>
<pre><code> a b over
--------------
a b a
</code></pre>
<h3>Definition</h3>
<p>There are many many ways to define this function.</p>
<blockquote>
<p>[swap] [tuck]</p>
<p>[[pop]] [nullary]</p>
<p>[[dup]] [dip] [swap]</p>
<p>[unit] [dupdip]</p>
<p>[unit] [dupdipd] [first]</p>
</blockquote>
<p>And so on...</p>
<h3>Discussion</h3>
<p>A fine old word from Forth.</p>
<h3>Crosslinks</h3>
<p>[tuck]</p>
<hr>
<h2>pam</h2>
<p>Combinator</p>
<p>Take a list of quoted functions from the stack and replace it
with a list of the [first] results from running those functions (on
copies of the rest of the stack.)</p>
<h3>Example</h3>
<pre><code> 5 7 [[+][-][*][/][%]] pam
-------------------------------
5 7 [12 -2 35 0 5]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[i]] [map]</p>
</blockquote>
<h3>Discussion</h3>
<p>A specialization of [map] that runs a list of functions in
parallel (if the underlying [map] function is so implemented, of
course.)</p>
<h3>Crosslinks</h3>
<p>[map]</p>
<hr>
<h2>pick</h2>
<p>See <a href="#getitem">getitem</a>.</p>
<hr>
<h2>pm</h2>
<p>Function</p>
<p>Plus or minus. Replace two numbers with their sum and
difference.</p>
<pre><code> a b pm
-----------------
(a+b) (a-b)
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[+] [-] [clop]</p>
</blockquote>
<hr>
<h2>pop</h2>
<p>Basis Function</p>
<p>Pop the top item from the stack and discard it.</p>
<pre><code> a pop
-----------
</code></pre>
<h3>Crosslinks</h3>
<p>[popd] [popdd] [popop] [popopd] [popopdd] [popopop]</p>
<hr>
<h2>popd</h2>
<p>Function</p>
<p>[pop] the second item down on the stack.</p>
<pre><code> a b popd
--------------
b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[swap] [pop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[pop] [popdd] [popop] [popopd] [popopdd] [popopop]</p>
<hr>
<h2>popdd</h2>
<p>Function</p>
<p>[pop] the third item on the stack.</p>
<pre><code> a b c popdd
-----------------
b c
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rolldown] [pop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[pop] [popd] [popop] [popopd] [popopdd] [popopop]</p>
<hr>
<h2>popop</h2>
<p>Function</p>
<p>[pop] two items from the stack.</p>
<pre><code> a b popop
---------------
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[pop] [pop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[pop] [popd] [popdd] [popopd] [popopdd] [popopop]</p>
<hr>
<h2>popopd</h2>
<p>Function</p>
<p>[pop] the second and third items from the stack.</p>
<pre><code> a b c popopd
------------------
c
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rollup] [popop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[pop] [popd] [popdd] [popop] [popopdd] [popopop]</p>
<hr>
<h2>popopdd</h2>
<p>Function</p>
<pre><code> a b c d popopdd
---------------------
c d
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[popop]] [dipd]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[pop] [popd] [popdd] [popop] [popopd] [popopop]</p>
<hr>
<h2>popopop</h2>
<p>Function</p>
<p>[pop] three items from the stack.</p>
<pre><code> a b c popopop
-------------------
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[pop] [popop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[pop] [popd] [popdd] [popop] [popopd] [popopdd]</p>
<hr>
<h2>pow</h2>
<p>Basis Function</p>
<p>Take two numbers <code>a</code> and <code>b</code> from the
stack and raise <code>a</code> to the <code>n</code>th power.
(<code>b</code> is on the top of the stack.)</p>
<pre><code> a n pow
-------------
(aⁿ)
</code></pre>
<h3>Example</h3>
<pre><code> 2 [2 3 4 5 6 7 8 9] [pow] map
-----------------------------------
2 [4 8 16 32 64 128 256 512]
</code></pre>
<hr>
<h2>pred</h2>
<p>Function</p>
<p>Predecessor. Decrement TOS.</p>
<h3>Definition</h3>
<blockquote>
<p>1 -</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[succ]</p>
<hr>
<h2>primrec</h2>
<p>Combinator</p>
<p>From the <a href=
"https://www.kevinalbrecht.com/code/joy-mirror/j00ovr.html">"Overview
of the language JOY"</a></p>
<blockquote>
<p>The primrec combinator expects two quoted programs in addition
to a data parameter. For an integer data parameter it works like
this: If the data parameter is zero, then the first quotation has
to produce the value to be returned. If the data parameter is
positive then the second has to combine the data parameter with the
result of applying the function to its predecessor.</p>
<p>5 [1] [*] primrec</p>
<p>Then primrec tests whether the top element on the stack
(initially the 5) is equal to zero. If it is, it pops it off and
executes one of the quotations, the [1] which leaves 1 on the stack
as the result. Otherwise it pushes a decremented copy of the top
element and recurses. On the way back from the recursion it uses
the other quotation, [*], to multiply what is now a factorial on
top of the stack by the second element on the stack.</p>
</blockquote>
<pre><code> 0 [Base] [Recur] primrec
------------------------------
Base
n [Base] [Recur] primrec
------------------------------------------ n &gt; 0
n (n-1) [Base] [Recur] primrec Recur
</code></pre>
<h3>Discussion</h3>
<p>Simple and useful specialization of the [genrec] combinator from
the <a href=
"https://www.kevinalbrecht.com/code/joy-mirror/index.html">original
Joy system</a>.</p>
<h3>Crosslinks</h3>
<p>[genrec] [tailrec]</p>
<hr>
<h2>product</h2>
<p>Function</p>
<p>Just as [sum] sums a list of numbers, this function multiplies
them together.</p>
<h3>Definition</h3>
<blockquote>
<p>1 [swap] [[mul]] [step]</p>
</blockquote>
<p>Or,</p>
<blockquote>
<p>[1] [[mul]] [primrec]</p>
</blockquote>
<hr>
<h2>quoted</h2>
<p>Function</p>
<p>"Quote D" Wrap the second item on the stack in a list.</p>
<pre><code> a b quoted
----------------
[a] b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[unit]] [dip]</p>
</blockquote>
<h3>Discussion</h3>
<p>This comes from the original Joy stuff.</p>
<h3>Crosslinks</h3>
<p>[unit]</p>
<hr>
<h2>range</h2>
<p>Function</p>
<p>Expect a number <code>n</code> on the stack and replace it with
a list: <code>[(n-1)...0]</code>.</p>
<h3>Example</h3>
<pre><code> 5 range
-----------------
[4 3 2 1 0]
-5 range
--------------
[]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[0 \&lt;=] [1 - [dup]] [anamorphism]</p>
</blockquote>
<h3>Discussion</h3>
<p>If <code>n</code> is less than 1 the resulting list is
empty.</p>
<h3>Crosslinks</h3>
<p>[range<em>to</em>zero]</p>
<hr>
<h2>range<em>to</em>zero</h2>
<p>Function</p>
<p>Take a number <code>n</code> from the stack and replace it with
a list <code>[0...n]</code>.</p>
<h3>Example</h3>
<pre><code> 5 range_to_zero
---------------------
[0 1 2 3 4 5]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[unit] [[down<em>to</em>zero]] [infra]</p>
</blockquote>
<h3>Discussion</h3>
<p>Note that the order is reversed compared to [range].</p>
<h3>Crosslinks</h3>
<p>[down<em>to</em>zero] [range]</p>
<hr>
<h2>reco</h2>
<p>Function</p>
<p>Replace the first item in a list with the item under it.</p>
<pre><code> a [b ...] reco
--------------------
[a ...]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rest] [cons]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[codireco] [make_generator]</p>
<hr>
<h2>rem</h2>
<p>See <a href="#mod">mod</a>.</p>
<hr>
<h2>remainder</h2>
<p>See <a href="#mod">mod</a>.</p>
<hr>
<h2>remove</h2>
<p>Function</p>
<p>Expects an item on the stack and a quote under it and removes
that item from the the quote. The item is only removed once. If the
list is empty or the item isn't in the list then the list is
unchanged.</p>
<pre><code> [1 2 3 1] 1 remove
------------------------
[2 3 1]
</code></pre>
<h3>Definition</h3>
<p>See the <a href=
"https://osdn.net/projects/joypy/scm/git/Thun/blobs/master/docs/notebooks/Remove-Function.ipynb">
"Remove Function" notebook</a>.</p>
<hr>
<h2>rest</h2>
<p>Basis Function</p>
<pre><code> [a ...] rest
------------------
[...]
</code></pre>
<h3>Crosslinks</h3>
<p>[first] [uncons]</p>
<hr>
<h2>reverse</h2>
<p>Function</p>
<p>Reverse the list on the top of the stack.</p>
<h3>Example</h3>
<pre><code> [1 2 3] reverse
---------------------
[3 2 1]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[\&lt;{}] [shunt]</p>
</blockquote>
<hr>
<h2>rolldown</h2>
<p>Function</p>
<pre><code> a b c rolldown
--------------------
b c a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[swapd] [swap]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[rollup]</p>
<hr>
<h2>rollup</h2>
<p>Function</p>
<pre><code> a b c rollup
------------------
c a b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[swap] [swapd]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[rolldown]</p>
<hr>
<h2>roll&gt;</h2>
<p>See <a href="#rollup">rollup</a>.</p>
<hr>
<h2>roll&lt;</h2>
<p>See <a href="#rolldown">rolldown</a>.</p>
<hr>
<h2>round</h2>
<p>Function</p>
<p>Round a number to a given precision in decimal digits.</p>
<h3>Discussion</h3>
<p>Another one that won't make sense until the "numeric tower" is
nailed down.</p>
<hr>
<h2>rrest</h2>
<p>Function</p>
<pre><code> [a b ...] rrest
---------------------
[...]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rest] [rest]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[rest]</p>
<hr>
<h2>rshift</h2>
<p>Basis Function</p>
<p><a href="https://en.wikipedia.org/wiki/Logical_shift">Logical
Right-Shift</a></p>
<pre><code> a n rshift
----------------
(a2ⁿ)
</code></pre>
<h3>Crosslinks</h3>
<p>[lshift]</p>
<hr>
<h2>run</h2>
<p>Function</p>
<p>Run a quoted program in a list.</p>
<h3>Example</h3>
<pre><code> [1 2 +] run
-----------------
[3]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[\&lt;{}] [infra]</p>
</blockquote>
<hr>
<h2>second</h2>
<p>Function</p>
<pre><code> [a b ...] second
----------------------
b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rest] [first]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[first] [third] [fourth]</p>
<hr>
<h2>select</h2>
<p>Basis Function</p>
<p>Use a Boolean value to select one of two items from a sequence.
:</p>
<pre><code> [a b] false select
------------------------
a
[a b] true select
-----------------------
b
</code></pre>
<h3>Discussion</h3>
<p>The sequence can contain more than two items but not fewer.</p>
<h3>Crosslinks</h3>
<p>[choice]</p>
<hr>
<h2>sharing</h2>
<p>Function</p>
<p>Print redistribution information.</p>
<h3>Discussion</h3>
<p>Mathematically this is a form of [id], but it has the
side-effect of printing out the GPL notice.</p>
<h3>Crosslinks</h3>
<p>[warranty]</p>
<hr>
<h2>shift</h2>
<p>Function</p>
<p>Move the top item from one list to another.</p>
<h3>Example</h3>
<pre><code> [x y z] [a b c] shift
---------------------------
[a x y z] [b c]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[uncons] [[swons]] [dip]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[shunt]</p>
<hr>
<h2>shunt</h2>
<p>Function</p>
<p>Like [concat] but [reverse] the top list into the second.</p>
<h3>Example</h3>
<pre><code> [a b c] [d e f] shunt
---------------------------
[f e d a b c]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[swons]] [step]</p>
</blockquote>
<h3>Discussion</h3>
<p>This is more efficient than [concat] so prefer it if you don't
need to preserve order.</p>
<h3>Crosslinks</h3>
<p>[concat] [reverse] [shift]</p>
<hr>
<h2>size</h2>
<p>Function</p>
<p>Replace a list with its size.</p>
<h3>Example</h3>
<pre><code> [23 [cats] 4] size
------------------------
3
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[pop] [++]] [step_zero]</p>
</blockquote>
<hr>
<h2>sort</h2>
<p>Function</p>
<p>Given a list return it sorted.</p>
<h3>Example</h3>
<pre><code> [4 2 5 7 1] sort
----------------------
[1 2 4 5 7]
</code></pre>
<hr>
<h2>spiral_next</h2>
<p>Function</p>
<p>Example code.</p>
<h3>Discussion</h3>
<p>See the <a href=
"https://joypy.osdn.io/notebooks/Square_Spiral.html">"Square Spiral
Example Joy Code" notebook</a>.</p>
<hr>
<h2>split_at</h2>
<p>Function</p>
<p>Split a list (second on the stack) at the position given by the
number on the top of the stack.</p>
<h3>Example</h3>
<pre><code> [1 2 3 4 5 6 7] 4 split_at
--------------------------------
[5 6 7] [4 3 2 1]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[drop]] [[take]] [clop]</p>
</blockquote>
<h3>Discussion</h3>
<p>Take a list and a number <code>n</code> from the stack, take
<code>n</code> items from the top of the list and [shunt] them onto
a new list that replaces the number <code>n</code> on the top of
the stack.</p>
<h3>Crosslinks</h3>
<p>[split_list]</p>
<hr>
<h2>split_list</h2>
<p>Function</p>
<p>Split a list (second on the stack) at the position given by the
number on the top of the stack such that [concat] would reconstruct
the original list.</p>
<pre><code> [1 2 3 4 5 6 7] 4 split_list
----------------------------------
[1 2 3 4] [5 6 7]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[take] [reverse]] [[drop]] [clop]</p>
</blockquote>
<h3>Discussion</h3>
<p>Compare with [split_at]. This function does extra work to ensure
that [concat] would reconstruct the original list.</p>
<h3>Crosslinks</h3>
<p>[split_at]</p>
<hr>
<h2>sqr</h2>
<p>Function</p>
<p>Square the number on the top of the stack.</p>
<pre><code> n sqr
------------
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[dup] [mul]</p>
</blockquote>
<hr>
<h2>sqrt</h2>
<p>Basis Function Combinator</p>
<p>Return the square root of the number a. Negative numbers return
complex roots.</p>
<h3>Discussion</h3>
<p>Another "numeric tower" hatch...</p>
<hr>
<h2>stack</h2>
<p>Function</p>
<p>Put the stack onto the stack.</p>
<pre><code> ... c b a stack
---------------------------
... c b a [a b c ...]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[] [swaack] [dup] [swaack] [first]</p>
</blockquote>
<h3>Discussion</h3>
<p>This function forms a pair with [unstack], and together they
form the complement to the "destructive" pair [enstacken] and
[disenstacken].</p>
<h3>Crosslinks</h3>
<p>[unstack] [enstacken] [disenstacken]</p>
<hr>
<h2>stackd</h2>
<p>Function</p>
<p>Grab the stack under the top item and put it onto the stack.</p>
<h3>Example</h3>
<pre><code> ... 1 2 3 stackd
------------------------
... 1 2 [2 1 ...] 3
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[stack]] [dip]</p>
</blockquote>
<hr>
<h2>step</h2>
<p>Combinator</p>
<p>Run a quoted program on each item in a sequence.</p>
<pre><code> ... [] [Q] step
---------------------
...
... [a] [Q] step
----------------------
... a Q
... [a b c] [Q] . step
----------------------------------------
... a . Q [b c] [Q] step
</code></pre>
<h3>Discussion</h3>
<p>See the <a href=
"https://joypy.osdn.io/notebooks/Recursion_Combinators.html">Recursion
Combinators notebook</a>.</p>
<h3>Crosslinks</h3>
<p>[step_zero]</p>
<hr>
<h2>step_zero</h2>
<p>Combinator</p>
<p>Like [step] but with 0 as the initial value.</p>
<pre><code> [...] [F] step_zero
-------------------------
0 [...] [F] step
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>0 [roll&gt;] [step]</p>
</blockquote>
<h3>Discussion</h3>
<p>[size] and [sum] can both be defined in terms of this
specialization of [step].</p>
<h3>Crosslinks</h3>
<p>[step]</p>
<hr>
<h2>stuncons</h2>
<p>Function</p>
<p>Take the [stack] and [uncons] the top item.</p>
<h3>Example</h3>
<pre><code> 1 2 3 stuncons
--------------------
1 2 3 3 [2 1]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[stack] [uncons]</p>
</blockquote>
<hr>
<h2>stununcons</h2>
<p>Function</p>
<p>Take the [stack] and [uncons] the top two items.</p>
<h3>Example</h3>
<pre><code> 1 2 3 stununcons
----------------------
1 2 3 3 2 [1]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[stack] [uncons] [uncons]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[stuncons]</p>
<hr>
<h2>sub</h2>
<p>Basis Function</p>
<p>Subtract the number on the top of the stack from the number
below it.</p>
<pre><code> a b sub
-------------
(a-b)
</code></pre>
<h3>Crosslinks</h3>
<p>[add]</p>
<hr>
<h2>succ</h2>
<p>Function</p>
<p>Successor. Increment TOS.</p>
<h3>Definition</h3>
<blockquote>
<p>1 +</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[pred]</p>
<hr>
<h2>sum</h2>
<p>Combinator</p>
<p>Given a quoted sequence of numbers return the sum.</p>
<h3>Example</h3>
<pre><code> [1 2 3 4 5] sum
---------------------
15
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[+] [step_zero]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[size]</p>
<hr>
<h2>swaack</h2>
<p>Basis Function</p>
<p>Swap stack. Take a list from the top of the stack, replace the
stack with the list, and put the old stack onto it.</p>
<h3>Example</h3>
<pre><code> 1 2 3 [4 5 6] swaack
--------------------------
6 5 4 [3 2 1]
</code></pre>
<h3>Discussion</h3>
<p>This function works as a kind of "context switch". It's used in
the definition of [infra].</p>
<h3>Crosslinks</h3>
<p>[infra]</p>
<hr>
<h2>swap</h2>
<p>Basis Function</p>
<p>Swap the top two items on the stack.</p>
<pre><code> a b swap
--------------
b a
</code></pre>
<h3>Crosslinks</h3>
<p>[swapd]</p>
<hr>
<h2>swapd</h2>
<p>Function</p>
<p>Swap the second and third items on the stack.</p>
<pre><code> a b c swapd
-----------------
b a c
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[swap]] [dip]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[over] [tuck]</p>
<hr>
<h2>swoncat</h2>
<p>Function</p>
<p>[concat] two lists, but [swap] the lists first.</p>
<h3>Definition</h3>
<blockquote>
<p>[swap] [concat]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[concat]</p>
<hr>
<h2>swons</h2>
<p>Function</p>
<p>Like [cons] but [swap] the item and list.</p>
<pre><code> [...] a swons
-------------------
[a ...]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[swap] [cons]</p>
</blockquote>
<hr>
<h2>tailrec</h2>
<p>Combinator</p>
<p>A specialization of the [genrec] combinator.</p>
<h3>Definition</h3>
<blockquote>
<p>[[i]] [genrec]</p>
</blockquote>
<h3>Discussion</h3>
<p>Some recursive functions do not need to store additional data or
pending actions per-call. These are called <a href=
"https://en.wikipedia.org/wiki/Tail_recursive">"tail recursive"
functions</a>. In Joy, they appear as [genrec] definitions that
have [i] for the second half of their recursive branch.</p>
<p>See the <a href=
"https://joypy.osdn.io/notebooks/Recursion_Combinators.html">Recursion
Combinators notebook</a>.</p>
<h3>Crosslinks</h3>
<p>[genrec]</p>
<hr>
<h2>take</h2>
<p>Function</p>
<p>Expects an integer <code>n</code> and a list on the stack and
replace them with a list with just the top <code>n</code> items in
reverse order.</p>
<pre><code> [a b c d] 2 take
----------------------
[b a]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[\&lt;\&lt;{}] [[shift]] [times] [pop]</p>
</blockquote>
<hr>
<h2>ternary</h2>
<p>Combinator</p>
<p>Run a quoted program using exactly three stack values and leave
the first item of the result on the stack.</p>
<pre><code> ... z y x [P] ternary
-------------------------
... a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[binary] [popd]</p>
</blockquote>
<h3>Discussion</h3>
<p>Runs any other quoted function and returns its first result
while consuming exactly three items from the stack.</p>
<h3>Crosslinks</h3>
<p><a href="#binary">binary</a> <a href="#nullary">nullary</a>
<a href="#unary">unary</a></p>
<hr>
<h2>third</h2>
<p>Function</p>
<pre><code> [a b c ...] third
-----------------------
c
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[rest] [second]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[first] [second] [fourth] [rest]</p>
<hr>
<h2>times</h2>
<p>Combinator</p>
<p>Expect a quoted program and an integer <code>n</code> on the
stack and do the program <code>n</code> times.</p>
<pre><code> ... n [Q] . times
----------------------- w/ n &lt;= 0
... .
... 1 [Q] . times
-----------------------
... . Q
... n [Q] . times
------------------------------------- w/ n &gt; 1
... . Q (n-1) [Q] times
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[-- dip] cons [swap] infra [0 &gt;] swap while pop :</p>
</blockquote>
<h3>Discussion</h3>
<p>This works by building a little [while] program and running
it:</p>
<pre><code> 1 3 [++] • [-- dip] cons [swap] infra [0 &gt;] swap while pop
1 3 [++] [-- dip] • cons [swap] infra [0 &gt;] swap while pop
1 3 [[++] -- dip] • [swap] infra [0 &gt;] swap while pop
1 3 [[++] -- dip] [swap] • infra [0 &gt;] swap while pop
dip -- [++] • swap [3 1] swaack [0 &gt;] swap while pop
dip [++] -- • [3 1] swaack [0 &gt;] swap while pop
dip [++] -- [3 1] • swaack [0 &gt;] swap while pop
1 3 [-- [++] dip] • [0 &gt;] swap while pop
1 3 [-- [++] dip] [0 &gt;] • swap while pop
1 3 [0 &gt;] [-- [++] dip] • while pop
</code></pre>
<p>This is a common pattern in Joy. You accept some parameters from
the stack which typically include qouted programs and use them to
build another program which does the actual work. This is kind of
like macros in Lisp, or preprocessor directives in C.</p>
<hr>
<h2>truthy</h2>
<p>See <a href="#bool">bool</a>.</p>
<hr>
<h2>tuck</h2>
<p>Function</p>
<p>[dup] the item on the top of the stack under the second item on
the stack.</p>
<pre><code> a b tuck
--------------
b a b
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[dup] [[swap]] [dip]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[over]</p>
<hr>
<h2>unary</h2>
<p>(Combinator)</p>
<p>Run a quoted program using exactly one stack value and leave the
first item of the result on the stack.</p>
<pre><code> ... x [P] unary
---------------------
... a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[nullary] [popd]</p>
</blockquote>
<h3>Discussion</h3>
<p>Runs any other quoted function and returns its first result
while consuming exactly one item from the stack.</p>
<h3>Crosslinks</h3>
<p><a href="#binary">binary</a> <a href="#nullary">nullary</a>
<a href="#ternary">ternary</a></p>
<hr>
<h2>uncons</h2>
<p>Basis Function</p>
<p>Removes an item from a list and leaves it on the stack under the
rest of the list. You cannot <code>uncons</code> an item from an
empty list.</p>
<pre><code> [a ...] uncons
--------------------
a [...]
</code></pre>
<h3>Discussion</h3>
<p>This is the inverse of [cons].</p>
<h3>Crosslinks</h3>
<p>[cons]</p>
<hr>
<h2>unique</h2>
<p>Function</p>
<p>Given a list remove duplicate items.</p>
<hr>
<h2>unit</h2>
<p>Function</p>
<pre><code> a unit
------------
[a]
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[] [cons]</p>
</blockquote>
<hr>
<h2>unquoted</h2>
<p>Combinator</p>
<p>Unquote (using [i]) the list that is second on the stack.</p>
<h3>Example</h3>
<pre><code> 1 2 [3 4] 5 unquoted
--------------------------
1 2 3 4 5
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[[i]] [dip]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[unit]</p>
<hr>
<h2>unswons</h2>
<p>Function</p>
<pre><code> [a ...] unswons
---------------------
[...] a
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[uncons] [swap]</p>
</blockquote>
<hr>
<h2>void</h2>
<p>Basis Function</p>
<p>True if the form on TOS is void otherwise False.</p>
<h3>Discussion</h3>
<p>A form is any Joy expression composed solely of lists. This
represents a binary Boolean logical formula in the arithmetic of
the "Laws of Form", see <a href="http://www.markability.net/">The
Markable Mark</a></p>
<hr>
<h2>warranty</h2>
<p>Basis Function</p>
<p>Print warranty information.</p>
<hr>
<h2>while</h2>
<p>Combinator</p>
<p>A specialization of [loop] that accepts a quoted predicate
program <code>P</code> and runs it [nullary].</p>
<pre><code> [P] [F] while
------------------- P -&gt; false
[P] [F] while
--------------------- P -&gt; true
F [P] [F] while
</code></pre>
<h3>Definition</h3>
<blockquote>
<p>[swap] [nulco] [dupdipd] [concat] [loop]</p>
</blockquote>
<h3>Crosslinks</h3>
<p>[loop]</p>
<hr>
<h2>words</h2>
<p>Basis Function</p>
<p>Print all the words in alphabetical order.</p>
<h3>Discussion</h3>
<p>Mathematically this is a form of [id].</p>
<h3>Crosslinks</h3>
<p>[help]</p>
<hr>
<h2>x</h2>
<p>Combinator</p>
<p>Take a quoted function <code>F</code> and run it with itself as
the first item on the stack.</p>
<pre><code> [F] x
-----------
[F] F
</code></pre>
<h3>Definition</h3>
<pre><code>dup i
</code></pre>
<h3>Discussion</h3>
<p>The simplest recursive pattern.</p>
<p>See the <a href=
"https://joypy.osdn.io/notebooks/Recursion_Combinators.html">Recursion
Combinators notebook</a>. as well as <a href=
"https://www.kevinalbrecht.com/code/joy-mirror/j05cmp.html">Recursion
Theory and Joy</a> by Manfred von</p>
<hr>
<h2>xor</h2>
<p>Basis Function</p>
<p>Logical bit-wise eXclusive OR.</p>
<h3>Crosslinks</h3>
<p>[and] [or]</p>
<hr>
<h2>zip</h2>
<p>Function</p>
<p>Replace the two lists on the top of the stack with a list of the
pairs from each list. The smallest list sets the length of the
result list.</p>
<h3>Example</h3>
<pre><code> [1 2 3] [4 5 6] zip
-------------------------
[[4 1] [5 2] [6 3]]
</code></pre>
</body>
</html>