Thun/thun/thun.pl

239 lines
6.7 KiB
Prolog

%
% Copyright © 2018 Simon Forman
%
% This file is part of Thun
%
% Thun is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Thun is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Thun. If not see <http://www.gnu.org/licenses/>.
%
:- use_module(library(clpfd)).
:- use_module(library(dcg/basics)).
:- op(990, xfy, ). % for Joy definitions.
:- dynamic func/3.
:- dynamic '≡'/2.
/*
An entry point.
*/
joy(InputString, StackIn, StackOut) :-
phrase(joy_parse(Expression), InputString), !,
thun(Expression, StackIn, StackOut).
/*
Parser
joy :== number | '[' joy* ']' | atom
*/
joy_parse([T|J]) --> blanks, joy_term(T), blanks, joy_parse(J).
joy_parse([]) --> [].
joy_term(N) --> number(N), !.
joy_term(J) --> "[", !, joy_parse(J), "]".
joy_term(C) --> symbol(C).
symbol(C) --> chars(Chars), !, {Chars \= [61, 61], atom_string(C, Chars)}.
chars([Ch|Rest]) --> char(Ch), chars(Rest).
chars([Ch]) --> char(Ch).
char(Ch) --> [Ch], {Ch \== 91, Ch \== 93, code_type(Ch, graph)}.
/*
Interpreter
thun(Expression, InputStack, OutputStack)
*/
thun([], S, S).
thun( [Lit|E], Si, So) :- literal(Lit), !, thun(E, [Lit|Si], So).
thun( [Def|E], Si, So) :- Def Body, !, append(Body, E, Eo), thun(Eo, Si, So).
thun( [Func|E], Si, So) :- func(Func, Si, S), thun(E, S, So).
thun([Combo|E], Si, So) :- combo(Combo, Si, S, E, Eo), thun(Eo, S, So).
% Some error handling.
thun([Unknown|E], Si, So) :- write("wtf? "), writeln(Unknown), So = [[Unknown|E]|Si].
/*
Literals
*/
literal(V) :- var(V).
literal(I) :- number(I).
literal([]).
literal([_|_]).
literal(true).
literal(false).
% Symbolic math expressions are literals.
literal(_+_).
literal(_-_).
literal(_*_).
literal(_/_).
/*
Functions
*/
func(cons, [A, B|S], [[B|A]|S]).
func(swap, [A, B|S], [B, A|S]).
func(dup, [A|S], [A, A|S]).
func(pop, [_|S], S ).
% func(+, [A, B|S], [C|S]) :- C #= A + B.
% func(-, [A, B|S], [C|S]) :- C #= B - A.
% func(*, [A, B|S], [C|S]) :- C #= A * B.
% func(/, [A, B|S], [C|S]) :- C #= B div A.
% Symbolic math. Compute the answer, or derivative, or whatever, later.
func(+, [A, B|S], [B + A|S]).
func(-, [A, B|S], [B - A|S]).
func(*, [A, B|S], [B * A|S]).
func(/, [A, B|S], [B / A|S]).
func(calc, [A|S], [B|S]) :- B is A.
func(bool, [ 0|S], [false|S]) :- !.
func(bool, [ 0.0|S], [false|S]) :- !.
func(bool, [ []|S], [false|S]) :- !.
func(bool, [ ""|S], [false|S]) :- !.
func(bool, [false|S], [false|S]) :- !.
func(bool, [_|S], [true|S]).
% func(pm, [A, B|S], [C, D|S]) :- C #= A + B, D #= B - A.
% func(pm, [A, B|S], [B + A, B - A|S]).
% func(sqrt, [A|S], [B|S]) :- B^2 #= A.
func(sqrt, [A|S], [sqrt(A)|S]).
func(concat, [A, B|S], [C|S]) :- append(B, A, C).
func(flatten, [A|S], [B|S]) :- flatten(A, B).
func(swaack, [R|S], [S|R]).
func(stack, S , [S|S]).
func(clear, _ , []).
func(first, [[X|_]|S], [X|S]).
func(rest, [[_|X]|S], [X|S]).
func(unit, [X|S], [[X]|S]).
func(rolldown, [A, B, C|S], [B, C, A|S]).
func(dupd, [A, B|S], [A, B, B|S]).
func(over, [A, B|S], [B, A, B|S]).
func(tuck, [A, B|S], [A, B, A|S]).
func(rollup, Si, So) :- func(rolldown, So, Si).
func(uncons, Si, So) :- func(cons, So, Si).
func(>, [A, B|S], [ true|S]) :- B > A.
func(>, [A, B|S], [false|S]) :- \+ B > A.
func(<, [A, B|S], [ true|S]) :- B < A.
func(<, [A, B|S], [false|S]) :- \+ B < A.
func(>=, [A, B|S], [ true|S]) :- B >= A.
func(>=, [A, B|S], [false|S]) :- \+ B >= A.
func(<=, [A, B|S], [ true|S]) :- B =< A.
func(<=, [A, B|S], [false|S]) :- \+ B =< A.
func(=, [A, B|S], [ true|S]) :- B =:= A.
func(=, [A, B|S], [false|S]) :- B =\= A.
func(<>, [A, B|S], [ true|S]) :- B =\= A.
func(<>, [A, B|S], [false|S]) :- B =:= A.
% func(>, [A, B|S], [T|S]) :- B #> A #<==> R, r_truth(R, T).
% func(<, [A, B|S], [T|S]) :- B #< A #<==> R, r_truth(R, T).
% func(=, [A, B|S], [T|S]) :- B #= A #<==> R, r_truth(R, T).
% func(>=, [A, B|S], [T|S]) :- B #>= A #<==> R, r_truth(R, T).
% func(<=, [A, B|S], [T|S]) :- B #=< A #<==> R, r_truth(R, T).
% func(<>, [A, B|S], [T|S]) :- B #\= A #<==> R, r_truth(R, T).
r_truth(0, false).
r_truth(1, true).
/*
Definitions
*/
joy_def(Def Body) --> symbol(Def), blanks, "==", joy_parse(Body).
joy_defs([Def|Defs]) --> blanks, joy_def(Def), blanks, joy_defs(Defs).
joy_defs([]) --> [].
read_defs(DefsFile, Defs) :-
read_file_to_codes(DefsFile, Codes, []),
phrase(joy_defs(Defs), Codes).
assert_defs(DefsFile) :-
read_defs(DefsFile, Defs),
forall(member(Def, Defs), assert_def(Def)).
assert_def(DefBody) :- retractall(Def_), assertz(DefBody).
:- assert_defs("defs.txt").
/*
Combinators
*/
combo(i, [P|S], S, Ei, Eo) :- append(P, Ei, Eo).
combo(dip, [P, X|S], S, Ei, Eo) :- append(P, [X|Ei], Eo).
combo(dipd, [P, X, Y|S], S, Ei, Eo) :- append(P, [Y, X|Ei], Eo).
combo(dupdip, [P, X|S], [X|S], Ei, Eo) :- append(P, [X|Ei], Eo).
combo(branch, [T, _, true|S], S, Ei, Eo) :- append(T, Ei, Eo).
combo(branch, [_, F, false|S], S, Ei, Eo) :- append(F, Ei, Eo).
combo(loop, [_, false|S], S, E, E ).
combo(loop, [B, true|S], S, Ei, Eo) :- append(B, [B, loop|Ei], Eo).
combo(step, [_, []|S], S, E, E ).
combo(step, [P, [X]|S], [X|S], Ei, Eo) :- !, append(P, Ei, Eo).
combo(step, [P, [X|Z]|S], [X|S], Ei, Eo) :- append(P, [Z, P, step|Ei], Eo).
combo(times, [_, 0|S], S, E, E ).
combo(times, [P, 1|S], S, Ei, Eo) :- append(P, Ei, Eo).
combo(times, [P, N|S], S, Ei, Eo) :- N #>= 2, M #= N - 1, append(P, [M, P, times|Ei], Eo).
combo(times, [_, N|S], S, _, _ ) :- N #< 0, fail.
combo(genrec, [R1, R0, Then, If|S],
[ Else, Then, If|S], E, [ifte|E]) :-
append(R0, [[If, Then, R0, R1, genrec]|R1], Else).
/*
Compiler
*/
joy_compile(Name, Expression) :- jcmpl(Name, Expression, Rule), asserta(Rule).
show_joy_compile(Name, Expression) :- jcmpl(Name, Expression, Rule), portray_clause(Rule).
jcmpl(Name, Expression, Rule) :-
call_residue_vars(thun(Expression, Si, So), Term),
copy_term(Term, Term, Gs),
Head =.. [func, Name, Si, So],
rule(Head, Gs, Rule).
rule(Head, [], Head ).
rule(Head, [A|B], Head :- maplist(call, [A|B])).
% Simple DCGs to expand/contract definitions.
expando, Body --> [Def], {Def Body}.
contracto, [Def] --> {Def Body}, Body.
% phrase(expando, ExprIn, ExprOut).