323 lines
24 KiB
HTML
323 lines
24 KiB
HTML
|
||
<!DOCTYPE html>
|
||
|
||
<html>
|
||
<head>
|
||
<meta charset="utf-8" />
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
|
||
|
||
<title>Newton’s method — Thun 0.4.1 documentation</title>
|
||
<link rel="stylesheet" type="text/css" href="../_static/pygments.css" />
|
||
<link rel="stylesheet" type="text/css" href="../_static/alabaster.css" />
|
||
<script data-url_root="../" id="documentation_options" src="../_static/documentation_options.js"></script>
|
||
<script src="../_static/jquery.js"></script>
|
||
<script src="../_static/underscore.js"></script>
|
||
<script src="../_static/doctools.js"></script>
|
||
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||
<link rel="index" title="Index" href="../genindex.html" />
|
||
<link rel="search" title="Search" href="../search.html" />
|
||
<link rel="next" title="Square Spiral Example Joy Code" href="Square_Spiral.html" />
|
||
<link rel="prev" title="Using x to Generate Values" href="Generator_Programs.html" />
|
||
|
||
<link rel="stylesheet" href="../_static/custom.css" type="text/css" />
|
||
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=0.9, maximum-scale=0.9" />
|
||
|
||
</head><body>
|
||
|
||
|
||
<div class="document">
|
||
<div class="documentwrapper">
|
||
<div class="bodywrapper">
|
||
|
||
|
||
<div class="body" role="main">
|
||
|
||
<section id="newton-s-method">
|
||
<h1><a class="reference external" href="https://en.wikipedia.org/wiki/Newton%27s_method">Newton’s method</a><a class="headerlink" href="#newton-s-method" title="Permalink to this headline">¶</a></h1>
|
||
<p>Let’s use the Newton-Raphson method for finding the root of an equation
|
||
to write a function that can compute the square root of a number.</p>
|
||
<p>Cf. <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
|
||
Hughes</a></p>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>from notebook_preamble import J, V, define
|
||
</pre></div>
|
||
</div>
|
||
<section id="a-generator-for-approximations">
|
||
<h2>A Generator for Approximations<a class="headerlink" href="#a-generator-for-approximations" title="Permalink to this headline">¶</a></h2>
|
||
<p>To make a generator that generates successive approximations let’s start
|
||
by assuming an initial approximation and then derive the function that
|
||
computes the next approximation:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="n">F</span>
|
||
<span class="o">---------</span>
|
||
<span class="n">a</span><span class="s1">'</span>
|
||
</pre></div>
|
||
</div>
|
||
<section id="a-function-to-compute-the-next-approximation">
|
||
<h3>A Function to Compute the Next Approximation<a class="headerlink" href="#a-function-to-compute-the-next-approximation" title="Permalink to this headline">¶</a></h3>
|
||
<p>This is the equation for computing the next approximate value of the
|
||
square root:</p>
|
||
<p><span class="math notranslate nohighlight">\(a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}\)</span></p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span> <span class="n">n</span> <span class="n">a</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span> <span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="p">(</span><span class="n">a</span><span class="o">+</span><span class="n">n</span><span class="o">/</span><span class="n">a</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>The function we want has the argument <code class="docutils literal notranslate"><span class="pre">n</span></code> in it:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">F</span> <span class="o">==</span> <span class="n">n</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
<section id="make-it-into-a-generator">
|
||
<h3>Make it into a Generator<a class="headerlink" href="#make-it-into-a-generator" title="Permalink to this headline">¶</a></h3>
|
||
<p>Our generator would be created by:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">dup</span> <span class="n">F</span><span class="p">]</span> <span class="n">make_generator</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>With n as part of the function F, but n is the input to the sqrt
|
||
function we’re writing. If we let 1 be the initial approximation:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">1</span> <span class="n">n</span> <span class="mi">1</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="mi">1</span> <span class="n">n</span><span class="o">/</span><span class="mi">1</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="mi">1</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="n">n</span><span class="o">+</span><span class="mi">1</span> <span class="mi">2</span> <span class="o">/</span>
|
||
<span class="p">(</span><span class="n">n</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span><span class="o">/</span><span class="mi">2</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>The generator can be written as:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mi">23</span> <span class="mi">1</span> <span class="n">swap</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
|
||
<span class="mi">1</span> <span class="mi">23</span> <span class="p">[</span><span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">cons</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
|
||
<span class="mi">1</span> <span class="p">[</span><span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="p">[</span><span class="n">dup</span><span class="p">]</span> <span class="n">swoncat</span> <span class="n">make_generator</span>
|
||
<span class="mi">1</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">make_generator</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>define('gsra 1 swap [over / + 2 /] cons [dup] swoncat make_generator')
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>J('23 gsra')
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="mi">1</span> <span class="p">[</span><span class="n">dup</span> <span class="mi">23</span> <span class="n">over</span> <span class="o">/</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">/</span><span class="p">]</span> <span class="n">codireco</span><span class="p">]</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Let’s drive the generator a few time (with the <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator) and
|
||
square the approximation to see how well it works…</p>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>J('23 gsra 6 [x popd] times first sqr')
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">23.0000000001585</span>
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
</section>
|
||
<section id="finding-consecutive-approximations-within-a-tolerance">
|
||
<h2>Finding Consecutive Approximations within a Tolerance<a class="headerlink" href="#finding-consecutive-approximations-within-a-tolerance" title="Permalink to this headline">¶</a></h2>
|
||
<p>From <a class="reference external" href="https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf">“Why Functional Programming Matters” by John
|
||
Hughes</a>:</p>
|
||
<blockquote>
|
||
<div><p>The remainder of a square root finder is a function <em>within</em>, which
|
||
takes a tolerance and a list of approximations and looks down the
|
||
list for two successive approximations that differ by no more than
|
||
the given tolerance.</p>
|
||
</div></blockquote>
|
||
<p>(And note that by “list” he means a lazily-evaluated list.)</p>
|
||
<p>Using the <em>output</em> <code class="docutils literal notranslate"><span class="pre">[a</span> <span class="pre">G]</span></code> of the above generator for square root
|
||
approximations, and further assuming that the first term a has been
|
||
generated already and epsilon ε is handy on the stack…</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span> <span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="n">b</span>
|
||
|
||
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
<span class="o">----------------------</span> <span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o">></span>
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
</pre></div>
|
||
</div>
|
||
<section id="predicate">
|
||
<h3>Predicate<a class="headerlink" href="#predicate" title="Permalink to this headline">¶</a></h3>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span><span class="p">]</span> <span class="n">dip</span> <span class="o"><=</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="n">a</span> <span class="n">b</span> <span class="o">-</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="n">a</span><span class="o">-</span><span class="n">b</span> <span class="nb">abs</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span> <span class="n">ε</span> <span class="o"><=</span>
|
||
<span class="p">(</span><span class="nb">abs</span><span class="p">(</span><span class="n">a</span><span class="o">-</span><span class="n">b</span><span class="p">)</span><span class="o"><=</span><span class="n">ε</span><span class="p">)</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>define('_within_P [first - abs] dip <=')
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
<section id="base-case">
|
||
<h3>Base-Case<a class="headerlink" href="#base-case" title="Permalink to this headline">¶</a></h3>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">roll</span><span class="o"><</span> <span class="n">popop</span> <span class="n">first</span>
|
||
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">a</span> <span class="n">popop</span> <span class="n">first</span>
|
||
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">first</span>
|
||
<span class="n">b</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>define('_within_B roll< popop first')
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
<section id="recur">
|
||
<h3>Recur<a class="headerlink" href="#recur" title="Permalink to this headline">¶</a></h3>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
|
||
</pre></div>
|
||
</div>
|
||
<ol class="arabic simple">
|
||
<li><p>Discard a.</p></li>
|
||
<li><p>Use <code class="docutils literal notranslate"><span class="pre">x</span></code> combinator to generate next term from <code class="docutils literal notranslate"><span class="pre">G</span></code>.</p></li>
|
||
<li><p>Run <code class="docutils literal notranslate"><span class="pre">within</span></code> with <code class="docutils literal notranslate"><span class="pre">i</span></code> (it is a “tail-recursive” function.)</p></li>
|
||
</ol>
|
||
<p>Pretty straightforward:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">R0</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">R1</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">popd</span> <span class="n">x</span><span class="p">]</span> <span class="n">dip</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">popd</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="p">[</span><span class="n">within</span><span class="p">]</span> <span class="n">i</span>
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
|
||
<span class="n">b</span> <span class="p">[</span><span class="n">c</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="n">within</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>define('_within_R [popd x] dip')
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
<section id="setting-up">
|
||
<h3>Setting up<a class="headerlink" href="#setting-up" title="Permalink to this headline">¶</a></h3>
|
||
<p>The recursive function we have defined so far needs a slight preamble:
|
||
<code class="docutils literal notranslate"><span class="pre">x</span></code> to prime the generator and the epsilon value to use:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="p">[</span><span class="n">a</span> <span class="n">G</span><span class="p">]</span> <span class="n">x</span> <span class="n">ε</span> <span class="o">...</span>
|
||
<span class="n">a</span> <span class="p">[</span><span class="n">b</span> <span class="n">G</span><span class="p">]</span> <span class="n">ε</span> <span class="o">...</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>define('within x 0.000000001 [_within_P] [_within_B] [_within_R] tailrec')
|
||
define('sqrt gsra within')
|
||
</pre></div>
|
||
</div>
|
||
<p>Try it out…</p>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>J('36 sqrt')
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">6.0</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>J('23 sqrt')
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Check it.</p>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>4.795831523312719**2
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">22.999999999999996</span>
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span>from math import sqrt
|
||
|
||
sqrt(23)
|
||
</pre></div>
|
||
</div>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="mf">4.795831523312719</span>
|
||
</pre></div>
|
||
</div>
|
||
</section>
|
||
</section>
|
||
</section>
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
</div>
|
||
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
||
<div class="sphinxsidebarwrapper">
|
||
<h1 class="logo"><a href="../index.html">Thun</a></h1>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<h3>Navigation</h3>
|
||
<ul class="current">
|
||
<li class="toctree-l1"><a class="reference internal" href="Intro.html">Thun: Joy in Python</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../joy.html">Joy Interpreter</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../stack.html">Stack or Quote or Sequence or List…</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../parser.html">Parsing Text into Joy Expressions</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../pretty.html">Tracing Joy Execution</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../library.html">Function Reference</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../lib.html">Functions Grouped by, er, Function with Examples</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../types.html">Type Inference of Joy Expressions</a></li>
|
||
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Essays about Programming in Joy</a><ul class="current">
|
||
<li class="toctree-l2"><a class="reference internal" href="Developing.html">Developing a Program in Joy</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Quadratic.html">Quadratic formula</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Replacing.html">Replacing Functions in the Dictionary</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Recursion_Combinators.html">Recursion Combinators</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Ordered_Binary_Trees.html">Treating Trees I: Ordered Binary Trees</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Treestep.html">Treating Trees II: <code class="docutils literal notranslate"><span class="pre">treestep</span></code></a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Generator_Programs.html">Using <code class="docutils literal notranslate"><span class="pre">x</span></code> to Generate Values</a></li>
|
||
<li class="toctree-l2 current"><a class="current reference internal" href="#">Newton’s method</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Square_Spiral.html">Square Spiral Example Joy Code</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Zipper.html">Traversing Datastructures with Zippers</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Types.html">The Blissful Elegance of Typing Joy</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="TypeChecking.html">Type Checking</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="NoUpdates.html">No Updates</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Categorical.html">Categorical Programming</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="The_Four_Operations.html">The Four Fundamental Operations of Definite Action</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="Derivatives_of_Regular_Expressions.html">∂RE</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
|
||
<div class="relations">
|
||
<h3>Related Topics</h3>
|
||
<ul>
|
||
<li><a href="../index.html">Documentation overview</a><ul>
|
||
<li><a href="index.html">Essays about Programming in Joy</a><ul>
|
||
<li>Previous: <a href="Generator_Programs.html" title="previous chapter">Using <code class="docutils literal notranslate"><span class="pre">x</span></code> to Generate Values</a></li>
|
||
<li>Next: <a href="Square_Spiral.html" title="next chapter">Square Spiral Example Joy Code</a></li>
|
||
</ul></li>
|
||
</ul></li>
|
||
</ul>
|
||
</div>
|
||
<div id="searchbox" style="display: none" role="search">
|
||
<h3 id="searchlabel">Quick search</h3>
|
||
<div class="searchformwrapper">
|
||
<form class="search" action="../search.html" method="get">
|
||
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
|
||
<input type="submit" value="Go" />
|
||
</form>
|
||
</div>
|
||
</div>
|
||
<script>$('#searchbox').show(0);</script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</div>
|
||
</div>
|
||
<div class="clearer"></div>
|
||
</div>
|
||
<div class="footer" role="contentinfo">
|
||
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">
|
||
<img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" />
|
||
</a>
|
||
<br />
|
||
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Thun Documentation</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://joypy.osdn.io/" property="cc:attributionName" rel="cc:attributionURL">Simon Forman</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://osdn.net/projects/joypy/" rel="dct:source">https://osdn.net/projects/joypy/</a>.
|
||
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 4.4.0.
|
||
</div>
|
||
|
||
</body>
|
||
</html> |