Thun/docs/sphinx_docs/notebooks/Zipper.rst

353 lines
11 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Traversing Datastructures with Zippers
======================================
This notebook is about using the “zipper” with joy datastructures. See
the `Zipper wikipedia
entry <https://en.wikipedia.org/wiki/Zipper_%28data_structure%29>`__ or
the original paper: `“FUNCTIONAL PEARL The Zipper” by Gérard
Huet <https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/huet-zipper.pdf>`__
Given a datastructure on the stack we can navigate through it, modify
it, and rebuild it using the “zipper” technique.
.. code:: python
from notebook_preamble import J, V, define
Trees
-----
In Joypy there arent any complex datastructures, just ints, floats,
strings, Symbols (strings that are names of functions) and sequences
(aka lists, aka quoted literals, aka aggregates, etc…), but we can build
`trees <https://en.wikipedia.org/wiki/Tree_%28data_structure%29>`__ out
of sequences.
.. code:: python
J('[1 [2 [3 4 25 6] 7] 8]')
.. parsed-literal::
[1 [2 [3 4 25 6] 7] 8]
Zipper in Joy
-------------
Zippers work by keeping track of the current item, the already-seen
items, and the yet-to-be seen items as you traverse a datastructure (the
datastructure used to keep track of these items is the zipper.)
In Joy we can do this with the following words:
::
z-down == [] swap uncons swap
z-up == swons swap shunt
z-right == [swons] cons dip uncons swap
z-left == swons [uncons swap] dip swap
Lets use them to change 25 into 625. The first time a word is used I
show the trace so you can see how it works. If we were going to use
these a lot it would make sense to write Python versions for efficiency,
but see below.
.. code:: python
define('z-down == [] swap uncons swap')
define('z-up == swons swap shunt')
define('z-right == [swons] cons dip uncons swap')
define('z-left == swons [uncons swap] dip swap')
.. code:: python
V('[1 [2 [3 4 25 6] 7] 8] z-down')
.. parsed-literal::
. [1 [2 [3 4 25 6] 7] 8] z-down
[1 [2 [3 4 25 6] 7] 8] . z-down
[1 [2 [3 4 25 6] 7] 8] . [] swap uncons swap
[1 [2 [3 4 25 6] 7] 8] [] . swap uncons swap
[] [1 [2 [3 4 25 6] 7] 8] . uncons swap
[] 1 [[2 [3 4 25 6] 7] 8] . swap
[] [[2 [3 4 25 6] 7] 8] 1 .
.. code:: python
V('[] [[2 [3 4 25 6] 7] 8] 1 z-right')
.. parsed-literal::
. [] [[2 [3 4 25 6] 7] 8] 1 z-right
[] . [[2 [3 4 25 6] 7] 8] 1 z-right
[] [[2 [3 4 25 6] 7] 8] . 1 z-right
[] [[2 [3 4 25 6] 7] 8] 1 . z-right
[] [[2 [3 4 25 6] 7] 8] 1 . [swons] cons dip uncons swap
[] [[2 [3 4 25 6] 7] 8] 1 [swons] . cons dip uncons swap
[] [[2 [3 4 25 6] 7] 8] [1 swons] . dip uncons swap
[] . 1 swons [[2 [3 4 25 6] 7] 8] uncons swap
[] 1 . swons [[2 [3 4 25 6] 7] 8] uncons swap
[] 1 . swap cons [[2 [3 4 25 6] 7] 8] uncons swap
1 [] . cons [[2 [3 4 25 6] 7] 8] uncons swap
[1] . [[2 [3 4 25 6] 7] 8] uncons swap
[1] [[2 [3 4 25 6] 7] 8] . uncons swap
[1] [2 [3 4 25 6] 7] [8] . swap
[1] [8] [2 [3 4 25 6] 7] .
.. code:: python
J('[1] [8] [2 [3 4 25 6] 7] z-down')
.. parsed-literal::
[1] [8] [] [[3 4 25 6] 7] 2
.. code:: python
J('[1] [8] [] [[3 4 25 6] 7] 2 z-right')
.. parsed-literal::
[1] [8] [2] [7] [3 4 25 6]
.. code:: python
J('[1] [8] [2] [7] [3 4 25 6] z-down')
.. parsed-literal::
[1] [8] [2] [7] [] [4 25 6] 3
.. code:: python
J('[1] [8] [2] [7] [] [4 25 6] 3 z-right')
.. parsed-literal::
[1] [8] [2] [7] [3] [25 6] 4
.. code:: python
J('[1] [8] [2] [7] [3] [25 6] 4 z-right')
.. parsed-literal::
[1] [8] [2] [7] [4 3] [6] 25
.. code:: python
J('[1] [8] [2] [7] [4 3] [6] 25 sqr')
.. parsed-literal::
[1] [8] [2] [7] [4 3] [6] 625
.. code:: python
V('[1] [8] [2] [7] [4 3] [6] 625 z-up')
.. parsed-literal::
. [1] [8] [2] [7] [4 3] [6] 625 z-up
[1] . [8] [2] [7] [4 3] [6] 625 z-up
[1] [8] . [2] [7] [4 3] [6] 625 z-up
[1] [8] [2] . [7] [4 3] [6] 625 z-up
[1] [8] [2] [7] . [4 3] [6] 625 z-up
[1] [8] [2] [7] [4 3] . [6] 625 z-up
[1] [8] [2] [7] [4 3] [6] . 625 z-up
[1] [8] [2] [7] [4 3] [6] 625 . z-up
[1] [8] [2] [7] [4 3] [6] 625 . swons swap shunt
[1] [8] [2] [7] [4 3] [6] 625 . swap cons swap shunt
[1] [8] [2] [7] [4 3] 625 [6] . cons swap shunt
[1] [8] [2] [7] [4 3] [625 6] . swap shunt
[1] [8] [2] [7] [625 6] [4 3] . shunt
[1] [8] [2] [7] [3 4 625 6] .
.. code:: python
J('[1] [8] [2] [7] [3 4 625 6] z-up')
.. parsed-literal::
[1] [8] [2 [3 4 625 6] 7]
.. code:: python
J('[1] [8] [2 [3 4 625 6] 7] z-up')
.. parsed-literal::
[1 [2 [3 4 625 6] 7] 8]
``dip`` and ``infra``
---------------------
In Joy we have the ``dip`` and ``infra`` combinators which can “target”
or “address” any particular item in a Joy tree structure.
.. code:: python
V('[1 [2 [3 4 25 6] 7] 8] [[[[[[sqr] dipd] infra] dip] infra] dip] infra')
.. parsed-literal::
. [1 [2 [3 4 25 6] 7] 8] [[[[[[sqr] dipd] infra] dip] infra] dip] infra
[1 [2 [3 4 25 6] 7] 8] . [[[[[[sqr] dipd] infra] dip] infra] dip] infra
[1 [2 [3 4 25 6] 7] 8] [[[[[[sqr] dipd] infra] dip] infra] dip] . infra
8 [2 [3 4 25 6] 7] 1 . [[[[[sqr] dipd] infra] dip] infra] dip [] swaack
8 [2 [3 4 25 6] 7] 1 [[[[[sqr] dipd] infra] dip] infra] . dip [] swaack
8 [2 [3 4 25 6] 7] . [[[[sqr] dipd] infra] dip] infra 1 [] swaack
8 [2 [3 4 25 6] 7] [[[[sqr] dipd] infra] dip] . infra 1 [] swaack
7 [3 4 25 6] 2 . [[[sqr] dipd] infra] dip [8] swaack 1 [] swaack
7 [3 4 25 6] 2 [[[sqr] dipd] infra] . dip [8] swaack 1 [] swaack
7 [3 4 25 6] . [[sqr] dipd] infra 2 [8] swaack 1 [] swaack
7 [3 4 25 6] [[sqr] dipd] . infra 2 [8] swaack 1 [] swaack
6 25 4 3 . [sqr] dipd [7] swaack 2 [8] swaack 1 [] swaack
6 25 4 3 [sqr] . dipd [7] swaack 2 [8] swaack 1 [] swaack
6 25 . sqr 4 3 [7] swaack 2 [8] swaack 1 [] swaack
6 25 . dup mul 4 3 [7] swaack 2 [8] swaack 1 [] swaack
6 25 25 . mul 4 3 [7] swaack 2 [8] swaack 1 [] swaack
6 625 . 4 3 [7] swaack 2 [8] swaack 1 [] swaack
6 625 4 . 3 [7] swaack 2 [8] swaack 1 [] swaack
6 625 4 3 . [7] swaack 2 [8] swaack 1 [] swaack
6 625 4 3 [7] . swaack 2 [8] swaack 1 [] swaack
7 [3 4 625 6] . 2 [8] swaack 1 [] swaack
7 [3 4 625 6] 2 . [8] swaack 1 [] swaack
7 [3 4 625 6] 2 [8] . swaack 1 [] swaack
8 [2 [3 4 625 6] 7] . 1 [] swaack
8 [2 [3 4 625 6] 7] 1 . [] swaack
8 [2 [3 4 625 6] 7] 1 [] . swaack
[1 [2 [3 4 625 6] 7] 8] .
If you read the trace carefully youll see that about half of it is the
``dip`` and ``infra`` combinators de-quoting programs and “digging” into
the subject datastructure. Instead of maintaining temporary results on
the stack they are pushed into the pending expression (continuation).
When ``sqr`` has run the rest of the pending expression rebuilds the
datastructure.
``Z``
-----
Imagine a function ``Z`` that accepts a sequence of ``dip`` and
``infra`` combinators, a quoted program ``[Q]``, and a datastructure to
work on. It would effectively execute the quoted program as if it had
been embedded in a nested series of quoted programs, e.g.:
::
[...] [Q] [dip dip infra dip infra dip infra] Z
-------------------------------------------------------------
[...] [[[[[[[Q] dip] dip] infra] dip] infra] dip] infra
The ``Z`` function isnt hard to make.
.. code:: python
define('Z == [[] cons cons] step i')
Here it is in action in a simplified scenario.
.. code:: python
V('1 [2 3 4] Z')
.. parsed-literal::
. 1 [2 3 4] Z
1 . [2 3 4] Z
1 [2 3 4] . Z
1 [2 3 4] . [[] cons cons] step i
1 [2 3 4] [[] cons cons] . step i
1 2 [[] cons cons] . i [3 4] [[] cons cons] step i
1 2 . [] cons cons [3 4] [[] cons cons] step i
1 2 [] . cons cons [3 4] [[] cons cons] step i
1 [2] . cons [3 4] [[] cons cons] step i
[1 2] . [3 4] [[] cons cons] step i
[1 2] [3 4] . [[] cons cons] step i
[1 2] [3 4] [[] cons cons] . step i
[1 2] 3 [[] cons cons] . i [4] [[] cons cons] step i
[1 2] 3 . [] cons cons [4] [[] cons cons] step i
[1 2] 3 [] . cons cons [4] [[] cons cons] step i
[1 2] [3] . cons [4] [[] cons cons] step i
[[1 2] 3] . [4] [[] cons cons] step i
[[1 2] 3] [4] . [[] cons cons] step i
[[1 2] 3] [4] [[] cons cons] . step i
[[1 2] 3] 4 [[] cons cons] . i i
[[1 2] 3] 4 . [] cons cons i
[[1 2] 3] 4 [] . cons cons i
[[1 2] 3] [4] . cons i
[[[1 2] 3] 4] . i
. [[1 2] 3] 4
[[1 2] 3] . 4
[[1 2] 3] 4 .
And here it is doing the main thing.
.. code:: python
J('[1 [2 [3 4 25 6] 7] 8] [sqr] [dip dip infra dip infra dip infra] Z')
.. parsed-literal::
[1 [2 [3 4 625 6] 7] 8]
Addressing
----------
Because we are only using two combinators we could replace the list with
a string made from only two characters.
::
[...] [Q] 'ddididi' Zstr
-------------------------------------------------------------
[...] [[[[[[[Q] dip] dip] infra] dip] infra] dip] infra
The string can be considered a name or address for an item in the
subject datastructure.
Determining the right “path” for an item in a tree.
---------------------------------------------------
Its easy to read off (in reverse) the right sequence of “d” and “i”
from the subject datastructure:
::
[ n [ n [ n n x ...
i d i d i d d Bingo!