```python from notebook_preamble import J, V, define ``` # [Quadratic formula](https://en.wikipedia.org/wiki/Quadratic_formula) Cf. [jp-quadratic.html](http://www.kevinalbrecht.com/code/joy-mirror/jp-quadratic.html) -b ± sqrt(b^2 - 4 * a * c) -------------------------------- 2 * a $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ## Write a straightforward program with variable names. This math translates to Joy code in a straightforward manner. We are going to use named variables to keep track of the arguments, then write a definition without them. ### `-b` b neg ### `sqrt(b^2 - 4 * a * c)` b sqr 4 a c * * - sqrt ### `/2a` a 2 * / ### `±` There is a function `pm` that accepts two values on the stack and replaces them with their sum and difference. pm == [+] [-] cleave popdd ### Putting Them Together b neg b sqr 4 a c * * - sqrt pm a 2 * [/] cons app2 We use `app2` to compute both roots by using a quoted program `[2a /]` built with `cons`. ## Derive a definition. Working backwards we use `dip` and `dipd` to extract the code from the variables: b neg b sqr 4 a c * * - sqrt pm a 2 * [/] cons app2 b [neg] dupdip sqr 4 a c * * - sqrt pm a 2 * [/] cons app2 b a c [[neg] dupdip sqr 4] dipd * * - sqrt pm a 2 * [/] cons app2 b a c a [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2 b a c over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2 The three arguments are to the left, so we can "chop off" everything to the right and say it's the definition of the `quadratic` function: ```python define('quadratic == over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2') ``` Let's try it out: ```python J('3 1 1 quadratic') ``` -0.3819660112501051 -2.618033988749895 If you look at the Joy evaluation trace you can see that the first few lines are the `dip` and `dipd` combinators building the main program by incorporating the values on the stack. Then that program runs and you get the results. This is pretty typical of Joy code. ```python V('-5 1 4 quadratic') ``` . -5 1 4 quadratic -5 . 1 4 quadratic -5 1 . 4 quadratic -5 1 4 . quadratic -5 1 4 . over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2 -5 1 4 1 . [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2 -5 1 4 1 [[[neg] dupdip sqr 4] dipd * * - sqrt pm] . dip 2 * [/] cons app2 -5 1 4 . [[neg] dupdip sqr 4] dipd * * - sqrt pm 1 2 * [/] cons app2 -5 1 4 [[neg] dupdip sqr 4] . dipd * * - sqrt pm 1 2 * [/] cons app2 -5 . [neg] dupdip sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 -5 [neg] . dupdip sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 -5 . neg -5 sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 5 . -5 sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 5 -5 . sqr 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 5 -5 . dup mul 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 5 -5 -5 . mul 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 5 25 . 4 1 4 * * - sqrt pm 1 2 * [/] cons app2 5 25 4 . 1 4 * * - sqrt pm 1 2 * [/] cons app2 5 25 4 1 . 4 * * - sqrt pm 1 2 * [/] cons app2 5 25 4 1 4 . * * - sqrt pm 1 2 * [/] cons app2 5 25 4 4 . * - sqrt pm 1 2 * [/] cons app2 5 25 16 . - sqrt pm 1 2 * [/] cons app2 5 9 . sqrt pm 1 2 * [/] cons app2 5 3.0 . pm 1 2 * [/] cons app2 8.0 2.0 . 1 2 * [/] cons app2 8.0 2.0 1 . 2 * [/] cons app2 8.0 2.0 1 2 . * [/] cons app2 8.0 2.0 2 . [/] cons app2 8.0 2.0 2 [/] . cons app2 8.0 2.0 [2 /] . app2 [8.0] [2 /] . infra first [2.0] [2 /] infra first 8.0 . 2 / [] swaack first [2.0] [2 /] infra first 8.0 2 . / [] swaack first [2.0] [2 /] infra first 4.0 . [] swaack first [2.0] [2 /] infra first 4.0 [] . swaack first [2.0] [2 /] infra first [4.0] . first [2.0] [2 /] infra first 4.0 . [2.0] [2 /] infra first 4.0 [2.0] . [2 /] infra first 4.0 [2.0] [2 /] . infra first 2.0 . 2 / [4.0] swaack first 2.0 2 . / [4.0] swaack first 1.0 . [4.0] swaack first 1.0 [4.0] . swaack first 4.0 [1.0] . first 4.0 1.0 .