```python from notebook_preamble import D, J, V, define ``` # Compiling Joy Given a Joy program like: sqr == dup mul ```python V('23 sqr') ``` . 23 sqr 23 . sqr 23 . dup mul 23 23 . mul 529 . How would we go about compiling this code (to Python for now)? ## Naive Call Chaining The simplest thing would be to compose the functions from the library: ```python dup, mul = D['dup'], D['mul'] ``` ```python def sqr(stack, expression, dictionary): return mul(*dup(stack, expression, dictionary)) ``` ```python old_sqr = D['sqr'] D['sqr'] = sqr ``` ```python V('23 sqr') ``` . 23 sqr 23 . sqr 529 . It's simple to write a function to emit this kind of crude "compiled" code. ```python def compile_joy(name, expression): term, expression = expression code = term +'(stack, expression, dictionary)' format_ = '%s(*%s)' while expression: term, expression = expression code = format_ % (term, code) return '''\ def %s(stack, expression, dictionary): return %s ''' % (name, code) def compile_joy_definition(defi): return compile_joy(defi.name, defi.body) ``` ```python print compile_joy_definition(old_sqr) ``` def sqr(stack, expression, dictionary): return mul(*dup(stack, expression, dictionary)) But what about literals? quoted == [unit] dip ```python unit, dip = D['unit'], D['dip'] ``` ```python # print compile_joy_definition(D['quoted']) # raises # TypeError: can only concatenate tuple (not "str") to tuple ``` For a program like `foo == bar baz 23 99 baq lerp barp` we would want something like: ```python def foo(stack, expression, dictionary): stack, expression, dictionary = baz(*bar(stack, expression, dictionary)) return barp(*lerp(*baq((99, (23, stack)), expression, dictionary))) ``` You have to have a little discontinuity when going from a symbol to a literal, because you have to pick out the stack from the arguments to push the literal(s) onto it before you continue chaining function calls. ## Compiling Yin Functions Call-chaining results in code that does too much work. For functions that operate on stacks and only rearrange values, what I like to call "Yin Functions", we can do better. We can infer the stack effects of these functions (or "expressions" or "programs") automatically, and the stack effects completely define the semantics of the functions, so we can directly write out a two-line Python function for them. This is already implemented in the `joy.utils.types.compile_()` function. ```python from joy.utils.types import compile_, doc_from_stack_effect, infer_string from joy.library import SimpleFunctionWrapper ``` ```python stack_effects = infer_string('tuck over dup') ``` Yin functions have only a single stack effect, they do not branch or loop. ```python for fi, fo in stack_effects: print doc_from_stack_effect(fi, fo) ``` (a2 a1 -- a1 a2 a1 a2 a2) ```python source = compile_('foo', stack_effects[0]) ``` All Yin functions can be described in Python as a tuple-unpacking (or "-destructuring") of the stack datastructure followed by building up the new stack structure. ```python print source ``` def foo(stack): """ :: (a2 a1 -- a1 a2 a1 a2 a2) """ (a1, (a2, s1)) = stack return (a2, (a2, (a1, (a2, (a1, s1))))) ```python exec compile(source, '__main__', 'single') D['foo'] = SimpleFunctionWrapper(foo) ``` ```python V('23 18 foo') ``` . 23 18 foo 23 . 18 foo 23 18 . foo 18 23 18 23 23 . ## Compiling from Stack Effects There are times when you're deriving a Joy program when you have a stack effect for a Yin function and you need to define it. For example, in the Ordered Binary Trees notebook there is a point where we must derive a function `Ee`: [key old_value left right] new_value key [Tree-add] Ee ------------------------------------------------------------ [key new_value left right] While it is not hard to come up with this function manually, there is no necessity. This function can be defined (in Python) directly from its stack effect: [a b c d] e a [f] Ee -------------------------- [a e c d] (I haven't yet implemented a simple interface for this yet. What follow is an exploration of how to do it.) ```python from joy.parser import text_to_expression ``` ```python Ein = '[a b c d] e a [f]' # The terms should be reversed here but I don't realize that until later. Eout = '[a e c d]' E = '[%s] [%s]' % (Ein, Eout) print E ``` [[a b c d] e a [f]] [[a e c d]] ```python (fi, (fo, _)) = text_to_expression(E) ``` ```python fi, fo ``` (((a, (b, (c, (d, ())))), (e, (a, ((f, ()), ())))), ((a, (e, (c, (d, ())))), ())) ```python Ein = '[a1 a2 a3 a4] a5 a6 a7' Eout = '[a1 a5 a3 a4]' E = '[%s] [%s]' % (Ein, Eout) print E ``` [[a1 a2 a3 a4] a5 a6 a7] [[a1 a5 a3 a4]] ```python (fi, (fo, _)) = text_to_expression(E) ``` ```python fi, fo ``` (((a1, (a2, (a3, (a4, ())))), (a5, (a6, (a7, ())))), ((a1, (a5, (a3, (a4, ())))), ())) ```python def type_vars(): from joy.library import a1, a2, a3, a4, a5, a6, a7, s0, s1 return locals() tv = type_vars() tv ``` {'a1': a1, 'a2': a2, 'a3': a3, 'a4': a4, 'a5': a5, 'a6': a6, 'a7': a7, 's0': s0, 's1': s1} ```python from joy.utils.types import reify ``` ```python stack_effect = reify(tv, (fi, fo)) print doc_from_stack_effect(*stack_effect) ``` (... a7 a6 a5 [a1 a2 a3 a4 ] -- ... [a1 a5 a3 a4 ]) ```python print stack_effect ``` (((a1, (a2, (a3, (a4, ())))), (a5, (a6, (a7, ())))), ((a1, (a5, (a3, (a4, ())))), ())) Almost, but what we really want is something like this: ```python stack_effect = eval('(((a1, (a2, (a3, (a4, s1)))), (a5, (a6, (a7, s0)))), ((a1, (a5, (a3, (a4, s1)))), s0))', tv) ``` Note the change of `()` to `JoyStackType` type variables. ```python print doc_from_stack_effect(*stack_effect) ``` (a7 a6 a5 [a1 a2 a3 a4 ...1] -- [a1 a5 a3 a4 ...1]) Now we can omit `a3` and `a4` if we like: ```python stack_effect = eval('(((a1, (a2, s1)), (a5, (a6, (a7, s0)))), ((a1, (a5, s1)), s0))', tv) ``` The `right` and `left` parts of the ordered binary tree node are subsumed in the tail of the node's stack/list. ```python print doc_from_stack_effect(*stack_effect) ``` (a7 a6 a5 [a1 a2 ...1] -- [a1 a5 ...1]) ```python source = compile_('Ee', stack_effect) print source ``` def Ee(stack): """ :: (a7 a6 a5 [a1 a2 ...1] -- [a1 a5 ...1]) """ ((a1, (a2, s1)), (a5, (a6, (a7, s0)))) = stack return ((a1, (a5, s1)), s0) Oops! The input stack is backwards... ```python stack_effect = eval('((a7, (a6, (a5, ((a1, (a2, s1)), s0)))), ((a1, (a5, s1)), s0))', tv) ``` ```python print doc_from_stack_effect(*stack_effect) ``` ([a1 a2 ...1] a5 a6 a7 -- [a1 a5 ...1]) ```python source = compile_('Ee', stack_effect) print source ``` def Ee(stack): """ :: ([a1 a2 ...1] a5 a6 a7 -- [a1 a5 ...1]) """ (a7, (a6, (a5, ((a1, (a2, s1)), s0)))) = stack return ((a1, (a5, s1)), s0) Compare: [key old_value left right] new_value key [Tree-add] Ee ------------------------------------------------------------ [key new_value left right] ```python eval(compile(source, '__main__', 'single')) D['Ee'] = SimpleFunctionWrapper(Ee) ``` ```python V('[a b c d] 1 2 [f] Ee') ``` . [a b c d] 1 2 [f] Ee [a b c d] . 1 2 [f] Ee [a b c d] 1 . 2 [f] Ee [a b c d] 1 2 . [f] Ee [a b c d] 1 2 [f] . Ee [a 1 c d] . ```python ``` ## Working with Yang Functions Consider the compiled code of `dup`: ```python def dup(stack): (a1, s23) = stack return (a1, (a1, s23)) ``` To compile `sqr == dup mul` we can compute the stack effect: ```python stack_effects = infer_string('dup mul') for fi, fo in stack_effects: print doc_from_stack_effect(fi, fo) ``` (n1 -- n2) Then we would want something like this: ```python def sqr(stack): (n1, s23) = stack n2 = mul(n1, n1) return (n2, s23) ``` ```python ``` ```python ``` How about... ```python stack_effects = infer_string('mul mul sub') for fi, fo in stack_effects: print doc_from_stack_effect(fi, fo) ``` (n4 n3 n2 n1 -- n5) ```python def foo(stack): (n1, (n2, (n3, (n4, s23)))) = stack n5 = mul(n1, n2) n6 = mul(n5, n3) n7 = sub(n6, n4) return (n7, s23) # or def foo(stack): (n1, (n2, (n3, (n4, s23)))) = stack n5 = sub(mul(mul(n1, n2), n3), n4) return (n5, s23) ``` ```python ``` ```python stack_effects = infer_string('tuck') for fi, fo in stack_effects: print doc_from_stack_effect(fi, fo) ``` (a2 a1 -- a1 a2 a1) ```python ``` ## Compiling Yin~Yang Functions First, we need a source of Python identifiers. I'm going to reuse `Symbol` class for this. ```python from joy.parser import Symbol ``` ```python def _names(): n = 0 while True: yield Symbol('a' + str(n)) n += 1 names = _names().next ``` Now we need an object that represents a Yang function that accepts two args and return one result (we'll implement other kinds a little later.) ```python class Foo(object): def __init__(self, name): self.name = name def __call__(self, stack, expression, code): in1, (in0, stack) = stack out = names() code.append(('call', out, self.name, (in0, in1))) return (out, stack), expression, code ``` A crude "interpreter" that translates expressions of args and Yin and Yang functions into a kind of simple dataflow graph. ```python def I(stack, expression, code): while expression: term, expression = expression if callable(term): stack, expression, _ = term(stack, expression, code) else: stack = term, stack code.append(('pop', term)) s = [] while stack: term, stack = stack s.insert(0, term) if s: code.append(('push',) + tuple(s)) return code ``` Something to convert the graph into Python code. ```python strtup = lambda a, b: '(%s, %s)' % (b, a) strstk = lambda rest: reduce(strtup, rest, 'stack') def code_gen(code): coalesce_pops(code) lines = [] for t in code: tag, rest = t[0], t[1:] if tag == 'pop': lines.append(strstk(rest) + ' = stack') elif tag == 'push': lines.append('stack = ' + strstk(rest)) elif tag == 'call': #out, name, in_ = rest lines.append('%s = %s%s' % rest) else: raise ValueError(tag) return '\n'.join(' ' + line for line in lines) def coalesce_pops(code): index = [i for i, t in enumerate(code) if t[0] == 'pop'] for start, end in yield_groups(index): code[start:end] = \ [tuple(['pop'] + [t for _, t in code[start:end][::-1]])] def yield_groups(index): ''' Yield slice indices for each group of contiguous ints in the index list. ''' k = 0 for i, (a, b) in enumerate(zip(index, index[1:])): if b - a > 1: if k != i: yield index[k], index[i] + 1 k = i + 1 if k < len(index): yield index[k], index[-1] + 1 def compile_yinyang(name, expression): return '''\ def %s(stack): %s return stack ''' % (name, code_gen(I((), expression, []))) ``` A few functions to try it with... ```python mul = Foo('mul') sub = Foo('sub') ``` ```python def import_yin(): from joy.utils.generated_library import * return locals() yin_dict = {name: SimpleFunctionWrapper(func) for name, func in import_yin().iteritems()} yin_dict dup = yin_dict['dup'] #def dup(stack, expression, code): # n, stack = stack # return (n, (n, stack)), expression ``` :1: SyntaxWarning: import * only allowed at module level def import_yin(): ... and there we are. ```python print compile_yinyang('mul_', (names(), (names(), (mul, ())))) ``` def mul_(stack): (a31, (a32, stack)) = stack a33 = mul(a32, a31) stack = (a33, stack) return stack ```python e = (names(), (dup, (mul, ()))) print compile_yinyang('sqr', e) ``` def sqr(stack): (a34, stack) = stack a35 = mul(a34, a34) stack = (a35, stack) return stack ```python e = (names(), (dup, (names(), (sub, (mul, ()))))) print compile_yinyang('foo', e) ``` def foo(stack): (a36, (a37, stack)) = stack a38 = sub(a37, a36) a39 = mul(a38, a36) stack = (a39, stack) return stack ```python e = (names(), (names(), (mul, (dup, (sub, (dup, ())))))) print compile_yinyang('bar', e) ``` def bar(stack): (a40, (a41, stack)) = stack a42 = mul(a41, a40) a43 = sub(a42, a42) stack = (a43, (a43, stack)) return stack ```python e = (names(), (dup, (dup, (mul, (dup, (mul, (mul, ()))))))) print compile_yinyang('to_the_fifth_power', e) ``` def to_the_fifth_power(stack): (a44, stack) = stack a45 = mul(a44, a44) a46 = mul(a45, a45) a47 = mul(a46, a44) stack = (a47, stack) return stack ```python ``` ```python ``` ```python ``` ```python ```