joy_lex([tok(Token)|Ls]) --> chars(TokenCodes), !, {atom_codes(Token, TokenCodes)}, joy_lex(Ls). joy_lex([ lbracket|Ls]) --> "[", !, joy_lex(Ls). joy_lex([ rbracket|Ls]) --> "]", !, joy_lex(Ls). joy_lex(Ls) --> blank, !, joy_lex(Ls). joy_lex([]) --> []. % Then parse the tokens converting them to Prolog values and building up % the list structures (if any.) %joy_parse([J|Js]) --> joy_term(J), !, joy_parse(Js). %joy_parse([]) --> []. % %joy_term(list(J)) --> [lbracket], !, joy_parse(J), [rbracket]. %joy_term(Token) --> [tok(Codes)], {joy_token(Token, Codes)}. % %joy_token(int(I), Codes) :- number(I, Codes, []), !. % See dcg/basics. %joy_token(bool(true), `true`) :- !. %joy_token(bool(false), `false`) :- !. %joy_token(symbol(S), Codes) :- atom_codes(S, Codes). % % %text_to_expression(Text, Expression) :- % phrase(joy_lex(Tokens), Text), !, % phrase(joy_parse(Expression), Tokens). % Apologies for all the (green, I hope) cuts. The strength of the Joy % syntax is that it's uninteresting. chars([Ch|Rest]) --> char(Ch), chars(Rest). chars([Ch]) --> char(Ch). char(Ch) --> \+ blank, [Ch], { Ch \== 0'[, Ch \== 0'] }. blank --> [9]. blank --> [10]. blank --> [11]. blank --> [12]. blank --> [13]. blank --> [32]. blank --> [194, 133]. blank --> [194, 160]. blank --> [225, 154, 128]. blank --> [226, 128, 128]. blank --> [226, 128, 129]. blank --> [226, 128, 130]. blank --> [226, 128, 131]. blank --> [226, 128, 132]. blank --> [226, 128, 133]. blank --> [226, 128, 134]. blank --> [226, 128, 135]. blank --> [226, 128, 136]. blank --> [226, 128, 137]. blank --> [226, 128, 138]. blank --> [226, 128, 168]. blank --> [226, 128, 169]. blank --> [226, 128, 175]. blank --> [226, 129, 159]. blank --> [227, 128, 128]. do :- phrase(joy_lex(Tokens), "23[15]").