/* Copyright 2018, 2019 Simon Forman This file is part of Thun Thun is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Thun is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Thun. If not see . */ % :- dynamic(func/3). % :- discontiguous(func/3). :- initialization(loop). /* Interpreter thun(Expression, InputStack, OutputStack) */ thun([], S, S). thun( [Lit|E], Si, So) :- literal(Lit), !, thun(E, [Lit|Si], So). thun( [Def|E], Si, So) :- def(Def, Body), !, append(Body, E, Eo), thun(Eo, Si, So). thun( [Func|E], Si, So) :- func(Func, Si, S), thun(E, S, So). thun([Combo|E], Si, So) :- combo(Combo, Si, S, E, Eo), thun(Eo, S, So). % Some error handling. thun([Unknown|E], Si, So) :- damned_thing(Unknown), write(`wtf? `), write(Unknown), nl, So = [[Unknown|E]|Si]. damned_thing(It) :- \+ literal(It), \+ def(It, _), \+ func(It, _, _), \+ combo(It, _, _, _, _). /* Literals */ literal(V) :- var(V). literal(I) :- number(I). literal([]). literal([_|_]). literal(true). literal(false). % Symbolic math expressions are literals. literal(_+_). literal(_-_). literal(_*_). literal(_/_). literal(_ mod _). % Symbolic comparisons are literals. literal(_>_). literal(_<_). literal(_>=_). literal(_=<_). literal(_=:=_). literal(_=\=_). /* Functions */ func(cons, [A, B|S], [[B|A]|S]). func(swap, [A, B|S], [B, A|S]). func(dup, [A|S], [A, A|S]). func(pop, [_|S], S ). func(sqrt, [A|S], [sqrt(A)|S]). func(concat, [A, B|S], [C|S]) :- append(B, A, C). func(flatten, [A|S], [B|S]) :- flatten(A, B). func(swaack, [R|S], [S|R]). func(stack, S , [S|S]). func(clear, _ , []). func(first, [[X|_]|S], [X|S]). func(rest, [[_|X]|S], [X|S]). func(unit, [X|S], [[X]|S]). func(rolldown, [A, B, C|S], [B, C, A|S]). func(dupd, [A, B|S], [A, B, B|S]). func(over, [A, B|S], [B, A, B|S]). func(tuck, [A, B|S], [A, B, A|S]). func(shift, [[B|A], C|D], [A, [B|C]|D]). func(rollup, Si, So) :- func(rolldown, So, Si). func(uncons, Si, So) :- func(cons, So, Si). func(bool, [ 0|S], [false|S]) :- !. func(bool, [ 0.0|S], [false|S]) :- !. func(bool, [ []|S], [false|S]) :- !. func(bool, [ ""|S], [false|S]) :- !. func(bool, [false|S], [false|S]) :- !. func(bool, [_|S], [true|S]). /* Combinators */ combo(i, [P|S], S, Ei, Eo) :- append(P, Ei, Eo). combo(dip, [P, X|S], S, Ei, Eo) :- append(P, [X|Ei], Eo). combo(dipd, [P, X, Y|S], S, Ei, Eo) :- append(P, [Y, X|Ei], Eo). combo(dupdip, [P, X|S], [X|S], Ei, Eo) :- append(P, [X|Ei], Eo). combo(dupdip, [P, X|S], [X|S], Ei, Eo) :- append(P, [X|Ei], Eo). combo(branch, [T, _, true|S], S, Ei, Eo) :- append(T, Ei, Eo). combo(branch, [_, F, false|S], S, Ei, Eo) :- append(F, Ei, Eo). combo(branch, [T, F, Expr|S], S, Ei, Eo) :- \+ Expr = true, \+ Expr = false, catch( % Try Expr and do one or the other, (Expr -> append(T, Ei, Eo) ; append(F, Ei, Eo)), _, % If Expr don't grok, try both branches. (append(T, Ei, Eo) ; append(F, Ei, Eo)) ). combo(loop, [_, false|S], S, E, E ). combo(loop, [B, true|S], S, Ei, Eo) :- append(B, [B, loop|Ei], Eo). combo(loop, [B, Expr|S], S, Ei, Eo) :- \+ Expr = true, \+ Expr = false, catch( % Try Expr and do one or the other, (Expr -> append(B, [B, loop|Ei], Eo) ; Ei=Eo), _, % If Expr don't grok, try both branches. (Ei=Eo ; append(B, [B, loop|Ei], Eo)) ). combo(step, [_, []|S], S, E, E ). combo(step, [P, [X]|S], [X|S], Ei, Eo) :- !, append(P, Ei, Eo). combo(step, [P, [X|Z]|S], [X|S], Ei, Eo) :- append(P, [Z, P, step|Ei], Eo). combo(times, [_, 0|S], S, E, E ). combo(times, [P, 1|S], S, Ei, Eo) :- append(P, Ei, Eo). combo(times, [P, N|S], S, Ei, Eo) :- N #>= 2, M #= N - 1, append(P, [M, P, times|Ei], Eo). combo(times, [_, N|S], S, _, _ ) :- N #< 0, fail. combo(genrec, [R1, R0, Then, If|S], [ Else, Then, If|S], E, [ifte|E]) :- Quoted = [If, Then, R0, R1, genrec], append(R0, [Quoted|R1], Else). /* Definitions */ def(x, [dup, i]). /* Parser */ joy_parse([T|S]) --> blanks, joy_term(T), blanks, joy_parse(S). joy_parse([]) --> []. joy_term(N) --> num(N), !. joy_term(S) --> [0'[], !, joy_parse(S), [0']]. joy_term(A) --> chars(Chars), !, {atom_codes(A, Chars)}. /* Main Loop */ loop :- line(Line), loop(Line, [], _Out). loop([eof], S, S) :- !. loop( Line, In, Out) :- do_line(Line, In, S), write(S), nl, line(NextLine), !, loop(NextLine, S, Out). do_line(Line, In, Out) :- phrase(joy_parse(E), Line), thun(E, In, Out). do_line(_Line, S, S) :- write('Err'), nl. % Line is the next new-line delimited line from standard input stream as % a list of character codes. line(Line) :- get_code(X), line(X, Line). line(10, []) :- !. % break on new-lines. line(-1, [eof]) :- !. % break on EOF line(X, [X|Line]) :- get_code(Y), !, line(Y, Line). chars([Ch|Rest]) --> char(Ch), chars(Rest). chars([Ch]) --> char(Ch). char(Ch) --> [Ch], { Ch \== 0'[, Ch \== 0'], Ch >= 33, Ch =< 126 }. blanks --> blank, !, blanks. blanks --> []. blank --> [32]. % TODO: negative numbers, floats, scientific notation. num(N) --> digits(Codes), !, { num(N, Codes) }. num(_, []) :- fail, !. num(N, [C|Codes]) :- number_codes(N, [C|Codes]). digits([H|T]) --> digit(H), !, digits(T). digits([]) --> []. digit(C) --> [C], { nonvar(C), C =< 57, C >= 48 }.