# [Quadratic formula](https://en.wikipedia.org/wiki/Quadratic_formula) ```python from notebook_preamble import J, V, define ``` Cf. [jp-quadratic.html](http://www.kevinalbrecht.com/code/joy-mirror/jp-quadratic.html) -b +/- sqrt(b^2 - 4 * a * c) ----------------------------- 2 * a $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ # Write a straightforward program with variable names. b neg b sqr 4 a c * * - sqrt [+] [-] cleave a 2 * [truediv] cons app2 ### Check it. b neg b sqr 4 a c * * - sqrt [+] [-] cleave a 2 * [truediv] cons app2 -b b sqr 4 a c * * - sqrt [+] [-] cleave a 2 * [truediv] cons app2 -b b^2 4 a c * * - sqrt [+] [-] cleave a 2 * [truediv] cons app2 -b b^2 4ac - sqrt [+] [-] cleave a 2 * [truediv] cons app2 -b b^2-4ac sqrt [+] [-] cleave a 2 * [truediv] cons app2 -b sqrt(b^2-4ac) [+] [-] cleave a 2 * [truediv] cons app2 -b -b+sqrt(b^2-4ac) -b-sqrt(b^2-4ac) a 2 * [truediv] cons app2 -b -b+sqrt(b^2-4ac) -b-sqrt(b^2-4ac) 2a [truediv] cons app2 -b -b+sqrt(b^2-4ac) -b-sqrt(b^2-4ac) [2a truediv] app2 -b -b+sqrt(b^2-4ac)/2a -b-sqrt(b^2-4ac)/2a ### Codicil -b -b+sqrt(b^2-4ac)/2a -b-sqrt(b^2-4ac)/2a roll< pop -b+sqrt(b^2-4ac)/2a -b-sqrt(b^2-4ac)/2a -b pop -b+sqrt(b^2-4ac)/2a -b-sqrt(b^2-4ac)/2a # Derive a definition. b neg b sqr 4 a c * * - sqrt [+] [-] cleave a 2 * [truediv] cons app2 roll< pop b [neg] dupdip sqr 4 a c * * - sqrt [+] [-] cleave a 2 * [truediv] cons app2 roll< pop b a c [[neg] dupdip sqr 4] dipd * * - sqrt [+] [-] cleave a 2 * [truediv] cons app2 roll< pop b a c a [[[neg] dupdip sqr 4] dipd * * - sqrt [+] [-] cleave] dip 2 * [truediv] cons app2 roll< pop b a c over [[[neg] dupdip sqr 4] dipd * * - sqrt [+] [-] cleave] dip 2 * [truediv] cons app2 roll< pop ```python define('quadratic == over [[[neg] dupdip sqr 4] dipd * * - sqrt [+] [-] cleave] dip 2 * [truediv] cons app2 roll< pop') ``` ```python J('3 1 1 quadratic') ``` -0.3819660112501051 -2.618033988749895 ### Simplify We can define a `pm` plus-or-minus function: ```python define('pm == [+] [-] cleave popdd') ``` Then `quadratic` becomes: ```python define('quadratic == over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [truediv] cons app2') ``` ```python J('3 1 1 quadratic') ``` -0.3819660112501051 -2.618033988749895 ### Define a "native" `pm` function. The definition of `pm` above is pretty elegant, but the implementation takes a lot of steps relative to what it's accomplishing. Since we are likely to use `pm` more than once in the future, let's write a primitive in Python and add it to the dictionary. ```python from joy.library import SimpleFunctionWrapper from notebook_preamble import D @SimpleFunctionWrapper def pm(stack): a, (b, stack) = stack p, m, = b + a, b - a return m, (p, stack) D['pm'] = pm ``` The resulting trace is short enough to fit on a page. ```python V('3 1 1 quadratic') ``` . 3 1 1 quadratic 3 . 1 1 quadratic 3 1 . 1 quadratic 3 1 1 . quadratic 3 1 1 . over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [truediv] cons app2 3 1 1 1 . [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [truediv] cons app2 3 1 1 1 [[[neg] dupdip sqr 4] dipd * * - sqrt pm] . dip 2 * [truediv] cons app2 3 1 1 . [[neg] dupdip sqr 4] dipd * * - sqrt pm 1 2 * [truediv] cons app2 3 1 1 [[neg] dupdip sqr 4] . dipd * * - sqrt pm 1 2 * [truediv] cons app2 3 . [neg] dupdip sqr 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 3 [neg] . dupdip sqr 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 3 . neg 3 sqr 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 . 3 sqr 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 3 . sqr 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 3 . dup mul 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 3 3 . mul 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 9 . 4 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 9 4 . 1 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 9 4 1 . 1 * * - sqrt pm 1 2 * [truediv] cons app2 -3 9 4 1 1 . * * - sqrt pm 1 2 * [truediv] cons app2 -3 9 4 1 . * - sqrt pm 1 2 * [truediv] cons app2 -3 9 4 . - sqrt pm 1 2 * [truediv] cons app2 -3 5 . sqrt pm 1 2 * [truediv] cons app2 -3 2.23606797749979 . pm 1 2 * [truediv] cons app2 -0.7639320225002102 -5.23606797749979 . 1 2 * [truediv] cons app2 -0.7639320225002102 -5.23606797749979 1 . 2 * [truediv] cons app2 -0.7639320225002102 -5.23606797749979 1 2 . * [truediv] cons app2 -0.7639320225002102 -5.23606797749979 2 . [truediv] cons app2 -0.7639320225002102 -5.23606797749979 2 [truediv] . cons app2 -0.7639320225002102 -5.23606797749979 [2 truediv] . app2 [-0.7639320225002102] [2 truediv] . infra first [-5.23606797749979] [2 truediv] infra first -0.7639320225002102 . 2 truediv [] swaack first [-5.23606797749979] [2 truediv] infra first -0.7639320225002102 2 . truediv [] swaack first [-5.23606797749979] [2 truediv] infra first -0.3819660112501051 . [] swaack first [-5.23606797749979] [2 truediv] infra first -0.3819660112501051 [] . swaack first [-5.23606797749979] [2 truediv] infra first [-0.3819660112501051] . first [-5.23606797749979] [2 truediv] infra first -0.3819660112501051 . [-5.23606797749979] [2 truediv] infra first -0.3819660112501051 [-5.23606797749979] . [2 truediv] infra first -0.3819660112501051 [-5.23606797749979] [2 truediv] . infra first -5.23606797749979 . 2 truediv [-0.3819660112501051] swaack first -5.23606797749979 2 . truediv [-0.3819660112501051] swaack first -2.618033988749895 . [-0.3819660112501051] swaack first -2.618033988749895 [-0.3819660112501051] . swaack first -0.3819660112501051 [-2.618033988749895] . first -0.3819660112501051 -2.618033988749895 .