{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# [Newton's method](https://en.wikipedia.org/wiki/Newton%27s_method)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from notebook_preamble import J, V, define" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Cf. [\"Why Functional Programming Matters\" by John Hughes](https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$a_{i+1} = \\frac{(a_i+\\frac{n}{a_i})}{2}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define a function that computes the above equation:\n", "\n", " n a Q\n", " ---------------\n", " (a+n/a)/2\n", "\n", " n a tuck / + 2 /\n", " a n a / + 2 /\n", " a n/a + 2 /\n", " a+n/a 2 /\n", " (a+n/a)/2\n", "\n", "We want it to leave n but replace a, so we execute it with `unary`:\n", "\n", " Q == [tuck / + 2 /] unary" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "define('Q == [tuck / + 2 /] unary')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And a function to compute the error:\n", "\n", " n a sqr - abs\n", " |n-a**2|\n", "\n", "This should be `nullary` so as to leave both n and a on the stack below the error.\n", "\n", " err == [sqr - abs] nullary" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "define('err == [sqr - abs] nullary')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can define a recursive program that expects a number `n`, an initial estimate `a`, and an epsilon value `ε`, and that leaves on the stack the square root of `n` to within the precision of the epsilon value. (Later on we'll refine it to generate the initial estimate and hard-code an epsilon value.)\n", "\n", " n a ε square-root\n", " -----------------\n", " √n\n", "\n", "\n", "If we apply the two functions `Q` and `err` defined above we get the next approximation and the error on the stack below the epsilon.\n", "\n", " n a ε [Q err] dip\n", " n a Q err ε \n", " n a' err ε \n", " n a' e ε\n", "\n", "Let's define the recursive function from here. Start with `ifte`; the predicate and the base case behavior are obvious:\n", "\n", " n a' e ε [<] [popop popd] [J] ifte\n", "\n", "Base-case\n", "\n", " n a' e ε popop popd\n", " n a' popd\n", " a'\n", "\n", "The recursive branch is pretty easy. Discard the error and recur.\n", "\n", " w/ K == [<] [popop popd] [J] ifte\n", "\n", " n a' e ε J\n", " n a' e ε popd [Q err] dip [K] i\n", " n a' ε [Q err] dip [K] i\n", " n a' Q err ε [K] i\n", " n a'' e ε K\n", "\n", "This fragment alone is pretty useful." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "define('K == [<] [popop popd] [popd [Q err] dip] primrec')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5.000000232305737\n" ] } ], "source": [ "J('25 10 0.001 dup K')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5.000000000000005\n" ] } ], "source": [ "J('25 10 0.000001 dup K')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So now all we need is a way to generate an initial approximation and an epsilon value:\n", "\n", " square-root == dup 3 / 0.000001 dup K" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "define('square-root == dup 3 / 0.000001 dup K')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6.000000000000007\n" ] } ], "source": [ "J('36 square-root')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2212475.6192184356\n" ] } ], "source": [ "J('4895048365636 square-root')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4895048365636.0" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2212475.6192184356 * 2212475.6192184356" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }