from notebook_preamble import J, V, define
$a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}$
Let's define a function that computes the above equation:
n a Q
---------------
(a+n/a)/2
n a tuck / + 2 /
a n a / + 2 /
a n/a + 2 /
a+n/a 2 /
(a+n/a)/2
We want it to leave n but replace a, so we execute it with unary:
Q == [tuck / + 2 /] unary
define('Q == [tuck / + 2 /] unary')
And a function to compute the error:
n a sqr - abs
|n-a**2|
This should be nullary so as to leave both n and a on the stack below the error.
err == [sqr - abs] nullary
define('err == [sqr - abs] nullary')
Now we can define a recursive program that expects a number n, an initial estimate a, and an epsilon value ε, and that leaves on the stack the square root of n to within the precision of the epsilon value. (Later on we'll refine it to generate the initial estimate and hard-code an epsilon value.)
n a ε square-root
-----------------
√n
If we apply the two functions Q and err defined above we get the next approximation and the error on the stack below the epsilon.
n a ε [Q err] dip
n a Q err ε
n a' err ε
n a' e ε
Let's define the recursive function from here. Start with ifte; the predicate and the base case behavior are obvious:
n a' e ε [<] [popop popd] [J] ifte
Base-case
n a' e ε popop popd
n a' popd
a'
The recursive branch is pretty easy. Discard the error and recur.
w/ K == [<] [popop popd] [J] ifte
n a' e ε J
n a' e ε popd [Q err] dip [K] i
n a' ε [Q err] dip [K] i
n a' Q err ε [K] i
n a'' e ε K
This fragment alone is pretty useful.
define('K == [<] [popop popd] [popd [Q err] dip] primrec')
J('25 10 0.001 dup K')
J('25 10 0.000001 dup K')
So now all we need is a way to generate an initial approximation and an epsilon value:
square-root == dup 3 / 0.000001 dup K
define('square-root == dup 3 / 0.000001 dup K')
J('36 square-root')
J('4895048365636 square-root')
2212475.6192184356 * 2212475.6192184356