Examples (and some documentation) for the Words in the Library¶

In [1]:
from notebook_preamble import J, V

Stack Chatter¶

This is what I like to call the functions that just rearrange things on the stack. (One thing I want to mention is that during a hypothetical compilation phase these "stack chatter" words effectively disappear, because we can map the logical stack locations to registers that remain static for the duration of the computation. This remains to be done but it's "off the shelf" technology.)

clear¶

In [2]:
J('1 2 3 clear')

dup dupd¶

In [3]:
J('1 2 3 dup')
1 2 3 3
In [4]:
J('1 2 3 dupd')
1 2 2 3

enstacken disenstacken stack unstack¶

Replace the stack with a quote of itself.

In [5]:
J('1 2 3 enstacken')
[3 2 1]

Unpack a list onto the stack.

In [6]:
J('4 5 6 [3 2 1] unstack')
4 5 6 3 2 1

Get the stack on the stack.

In [7]:
J('1 2 3 stack')
1 2 3 [3 2 1]

Replace the stack with the list on top. The items appear reversed but they are not, is on the top of both the list and the stack.

In [8]:
J('1 2 3 [4 5 6] disenstacken')
6 5 4

pop popd popop¶

In [9]:
J('1 2 3 pop')
1 2
In [10]:
J('1 2 3 popd')
1 3
In [11]:
J('1 2 3 popop')
1

roll< rolldown roll> rollup¶

The "down" and "up" refer to the movement of two of the top three items (displacing the third.)

In [12]:
J('1 2 3 roll<')
2 3 1
In [13]:
J('1 2 3 roll>')
3 1 2

swap¶

In [14]:
J('1 2 3 swap')
1 3 2

tuck over¶

In [15]:
J('1 2 3 tuck')
1 3 2 3
In [16]:
J('1 2 3 over')
1 2 3 2

unit quoted unquoted¶

In [17]:
J('1 2 3 unit')
1 2 [3]
In [18]:
J('1 2 3 quoted')
1 [2] 3
In [19]:
J('1 [2] 3 unquoted')
1 2 3
In [20]:
V('1 [dup] 3 unquoted')  # Unquoting evaluates.  Be aware.
              • 1 [dup] 3 unquoted
            1 • [dup] 3 unquoted
      1 [dup] • 3 unquoted
    1 [dup] 3 • unquoted
    1 [dup] 3 • [i] dip
1 [dup] 3 [i] • dip
      1 [dup] • i 3
            1 • dup 3
          1 1 • 3
        1 1 3 • 

List words¶

concat swoncat shunt¶

In [21]:
J('[1 2 3] [4 5 6] concat')
[1 2 3 4 5 6]
In [22]:
J('[1 2 3] [4 5 6] swoncat')
[4 5 6 1 2 3]
In [23]:
J('[1 2 3] [4 5 6] shunt')
[6 5 4 1 2 3]

cons swons uncons¶

In [24]:
J('1 [2 3] cons')
[1 2 3]
In [25]:
J('[2 3] 1 swons')
[1 2 3]
In [26]:
J('[1 2 3] uncons')
1 [2 3]

first second third rest¶

In [27]:
J('[1 2 3 4] first')
1
In [28]:
J('[1 2 3 4] second')
2
In [29]:
J('[1 2 3 4] third')
3
In [30]:
J('[1 2 3 4] rest')
[2 3 4]

flatten¶

In [31]:
J('[[1] [2 [3] 4] [5 6]] flatten')
[1 2 [3] 4 5 6]

getitem at of drop take¶

at and getitem are the same function. of == swap at

In [32]:
J('[10 11 12 13 14] 2 getitem')
12
In [33]:
J('[1 2 3 4] 0 at')
1
In [34]:
J('2 [1 2 3 4] of')
3
In [35]:
J('[1 2 3 4] 2 drop')
[3 4]
In [36]:
J('[1 2 3 4] 2 take')  # reverses the order
[2 1]

reverse could be defines as reverse == dup size take

remove¶

In [37]:
J('[1 2 3 1 4] 1 remove')
[2 3 1 4]

reverse¶

In [38]:
J('[1 2 3 4] reverse')
[4 3 2 1]

size¶

In [39]:
J('[1 1 1 1] size')
4

swaack¶

"Swap stack" swap the list on the top of the stack for the stack, and put the old stack on top of the new one. Think of it as a context switch. Niether of the lists/stacks change their order.

In [40]:
J('1 2 3 [4 5 6] swaack')
6 5 4 [3 2 1]

choice select¶

In [41]:
J('23 9 1 choice')
9
In [42]:
J('23 9 0 choice')
23
In [43]:
J('[23 9 7] 1 select')  # select is basically getitem, should retire it?
9
In [44]:
J('[23 9 7] 0 select')
23

zip¶

In [45]:
J('[1 2 3] [6 5 4] zip')
[[6 1] [5 2] [4 3]]
In [46]:
J('[1 2 3] [6 5 4] zip [sum] map')
[7 7 7]

Math words¶

+ add¶

In [47]:
J('23 9 +')
32

- sub¶

In [48]:
J('23 9 -')
14

* mul¶

In [49]:
J('23 9 *')
207

/ div floordiv truediv¶

In [50]:
J('23 9 /')
2.5555555555555554
In [51]:
J('23 -9 truediv')
-2.5555555555555554
In [52]:
J('23 9 div')
2.5555555555555554
In [53]:
J('23 9 floordiv')
2
In [54]:
J('23 -9 div')
-2.5555555555555554
In [55]:
J('23 -9 floordiv')
-3

% mod modulus rem remainder¶

In [56]:
J('23 9 %')
5

neg¶

In [57]:
J('23 neg -5 neg')
-23 5

pow¶

In [58]:
J('2 10 pow')
1024

sqr sqrt¶

In [59]:
J('23 sqr')
529
In [60]:
J('23 sqrt')
4.795831523312719

++ succ -- pred¶

In [61]:
J('1 ++')
2
In [62]:
J('1 --')
0

<< lshift >> rshift¶

In [63]:
J('8 1 <<')
16
In [64]:
J('8 1 >>')
4

average¶

In [65]:
J('[1 2 3 5] average')
2.75

range range_to_zero down_to_zero¶

In [66]:
J('5 range')
[4 3 2 1 0]
In [67]:
J('5 range_to_zero')
[0 1 2 3 4 5]
In [68]:
J('5 down_to_zero')
5 4 3 2 1 0

product¶

In [69]:
J('[1 2 3 5] product')
30

sum¶

In [70]:
J('[1 2 3 5] sum')
11

min¶

In [71]:
J('[1 2 3 5] min')
1

gcd¶

In [72]:
J('45 30 gcd')
15

least_fraction¶

If we represent fractions as a quoted pair of integers [q d] this word reduces them to their ... least common factors or whatever.

In [73]:
J('[45 30] least_fraction')
[3.0 2.0]
In [74]:
J('[23 12] least_fraction')
[23.0 12.0]

Logic and Comparison¶

? truthy¶

Get the Boolean value of the item on the top of the stack.

In [75]:
J('23 truthy')
True
In [76]:
J('[] truthy')  # Python semantics.
False
In [77]:
J('0 truthy')
False
? == dup truthy
In [78]:
V('23 ?')
        • 23 ?
     23 • ?
     23 • dup truthy
  23 23 • truthy
23 True • 
In [79]:
J('[] ?')
[] False
In [80]:
J('0 ?')
0 False

& and¶

In [81]:
J('23 9 &')
1

!= <> ne¶

In [82]:
J('23 9 !=')
True

The usual suspects:

  • < lt
  • <= le
  • = eq
  • > gt
  • >= ge
  • not
  • or

^ xor¶

In [83]:
J('1 1 ^')
0
In [84]:
J('1 0 ^')
1

Miscellaneous¶

help¶

In [85]:
J('[help] help')
==== Help on help ====

Accepts a quoted symbol on the top of the stack and prints its docs.

---- end (help)


parse¶

In [86]:
J('[parse] help')
==== Help on parse ====

Parse the string on the stack to a Joy expression.

---- end (parse)


In [87]:
J('1 "2 [3] dup" parse')
1 [2 [3] dup]

run¶

Evaluate a quoted Joy sequence.

In [88]:
J('[1 2 dup + +] run')
[5]

Combinators¶

app1 app2 app3¶

In [89]:
J('[app1] help')
==== Help on app1 ====

Given a quoted program on TOS and anything as the second stack item run
the program and replace the two args with the first result of the
program.
::

                 ... x [Q] . app1
        -----------------------------------
           ... [x ...] [Q] . infra first

---- end (app1)


In [90]:
J('10 4 [sqr *] app1')
10 160
In [91]:
J('10 3 4 [sqr *] app2')
10 90 160
In [92]:
J('[app2] help')
==== Help on app2 ====

Like app1 with two items.
::

               ... y x [Q] . app2
        -----------------------------------
           ... [y ...] [Q] . infra first
               [x ...] [Q]   infra first

---- end (app2)


In [93]:
J('10 2 3 4 [sqr *] app3')
10 40 90 160

anamorphism¶

Given an initial value, a predicate function [P], and a generator function [G], the anamorphism combinator creates a sequence.

   n [P] [G] anamorphism
---------------------------
          [...]

Example, range:

range == [0 <=] [1 - dup] anamorphism
In [94]:
J('3 [0 <=] [1 - dup] anamorphism')
[2 1 0]

branch¶

In [95]:
J('3 4 1 [+] [*] branch')
12
In [96]:
J('3 4 0 [+] [*] branch')
7

cleave¶

... x [P] [Q] cleave

From the original Joy docs: "The cleave combinator expects two quotations, and below that an item x It first executes [P], with x on top, and saves the top result element. Then it executes [Q], again with x, and saves the top result. Finally it restores the stack to what it was below x and pushes the two results P(X) and Q(X)."

Note that P and Q can use items from the stack freely, since the stack (below x) is restored. cleave is a kind of parallel primitive, and it would make sense to create a version that uses, e.g. Python threads or something, to actually run P and Q concurrently. The current implementation of cleave is a definition in terms of app2:

cleave == [i] app2 [popd] dip
In [97]:
J('10 2 [+] [-] cleave')
10 12 8

dip dipd dipdd¶

In [98]:
J('1 2 3 4 5 [+] dip')
1 2 7 5
In [99]:
J('1 2 3 4 5 [+] dipd')
1 5 4 5
In [100]:
J('1 2 3 4 5 [+] dipdd')
3 3 4 5

dupdip¶

Expects a quoted program [Q] on the stack and some item under it, dup the item and dip the quoted program under it.

n [Q] dupdip == n Q n
In [101]:
V('23 [++] dupdip *')  # N(N + 1)
        • 23 [++] dupdip *
     23 • [++] dupdip *
23 [++] • dupdip *
     23 • ++ 23 *
     24 • 23 *
  24 23 • *
    552 • 

genrec primrec¶

In [102]:
J('[genrec] help')
==== Help on genrec ====

General Recursion Combinator.
::

                          [if] [then] [rec1] [rec2] genrec
    ---------------------------------------------------------------------
       [if] [then] [rec1 [[if] [then] [rec1] [rec2] genrec] rec2] ifte

From "Recursion Theory and Joy" (j05cmp.html) by Manfred von Thun:
"The genrec combinator takes four program parameters in addition to
whatever data parameters it needs. Fourth from the top is an if-part,
followed by a then-part. If the if-part yields true, then the then-part
is executed and the combinator terminates. The other two parameters are
the rec1-part and the rec2-part. If the if-part yields false, the
rec1-part is executed. Following that the four program parameters and
the combinator are again pushed onto the stack bundled up in a quoted
form. Then the rec2-part is executed, where it will find the bundled
form. Typically it will then execute the bundled form, either with i or
with app2, or some other combinator."

The way to design one of these is to fix your base case [then] and the
test [if], and then treat rec1 and rec2 as an else-part "sandwiching"
a quotation of the whole function.

For example, given a (general recursive) function 'F':
::

        F == [I] [T] [R1] [R2] genrec

If the [I] if-part fails you must derive R1 and R2 from:
::

        ... R1 [F] R2

Just set the stack arguments in front, and figure out what R1 and R2
have to do to apply the quoted [F] in the proper way.  In effect, the
genrec combinator turns into an ifte combinator with a quoted copy of
the original definition in the else-part:
::

        F == [I] [T] [R1]   [R2] genrec
          == [I] [T] [R1 [F] R2] ifte

Primitive recursive functions are those where R2 == i.
::

        P == [I] [T] [R] tailrec
          == [I] [T] [R [P] i] ifte
          == [I] [T] [R P] ifte

---- end (genrec)


In [103]:
J('3 [1 <=] [] [dup --] [i *] genrec')
6

i¶

In [104]:
V('1 2 3 [+ +] i')
            • 1 2 3 [+ +] i
          1 • 2 3 [+ +] i
        1 2 • 3 [+ +] i
      1 2 3 • [+ +] i
1 2 3 [+ +] • i
      1 2 3 • + +
        1 5 • +
          6 • 

ifte¶

[predicate] [then] [else] ifte
In [105]:
J('1 2 [1] [+] [*] ifte')
3
In [106]:
J('1 2 [0] [+] [*] ifte')
2

infra¶

In [107]:
V('1 2 3 [4 5 6] [* +] infra')
                    • 1 2 3 [4 5 6] [* +] infra
                  1 • 2 3 [4 5 6] [* +] infra
                1 2 • 3 [4 5 6] [* +] infra
              1 2 3 • [4 5 6] [* +] infra
      1 2 3 [4 5 6] • [* +] infra
1 2 3 [4 5 6] [* +] • infra
              6 5 4 • * + [3 2 1] swaack
               6 20 • + [3 2 1] swaack
                 26 • [3 2 1] swaack
         26 [3 2 1] • swaack
         1 2 3 [26] • 

loop¶

In [108]:
J('[loop] help')
==== Help on loop ====

Basic loop combinator.
::

           ... True [Q] loop
        -----------------------
              ... Q [Q] loop

           ... False [Q] loop
        ------------------------
                  ...

---- end (loop)


In [109]:
V('3 dup [1 - dup] loop')
              • 3 dup [1 - dup] loop
            3 • dup [1 - dup] loop
          3 3 • [1 - dup] loop
3 3 [1 - dup] • loop
            3 • 1 - dup [1 - dup] loop
          3 1 • - dup [1 - dup] loop
            2 • dup [1 - dup] loop
          2 2 • [1 - dup] loop
2 2 [1 - dup] • loop
            2 • 1 - dup [1 - dup] loop
          2 1 • - dup [1 - dup] loop
            1 • dup [1 - dup] loop
          1 1 • [1 - dup] loop
1 1 [1 - dup] • loop
            1 • 1 - dup [1 - dup] loop
          1 1 • - dup [1 - dup] loop
            0 • dup [1 - dup] loop
          0 0 • [1 - dup] loop
0 0 [1 - dup] • loop
            0 • 

map pam¶

In [110]:
J('10 [1 2 3] [*] map')
10 [10 20 30]
In [111]:
J('10 5 [[*][/][+][-]] pam')
10 5 [50 2.0 15 5]

nullary unary binary ternary¶

Run a quoted program enforcing arity.

In [112]:
J('1 2 3 4 5 [+] nullary')
1 2 3 4 5 9
In [113]:
J('1 2 3 4 5 [+] unary')
1 2 3 4 9
In [114]:
J('1 2 3 4 5 [+] binary')  # + has arity 2 so this is technically pointless...
1 2 3 9
In [115]:
J('1 2 3 4 5 [+] ternary')
1 2 9

step¶

In [116]:
J('[step] help')
==== Help on step ====

Run a quoted program on each item in a sequence.
::

           ... [] [Q] . step
        -----------------------
                  ... .


           ... [a] [Q] . step
        ------------------------
                 ... a . Q


           ... [a b c] [Q] . step
        ----------------------------------------
                     ... a . Q [b c] [Q] step

The step combinator executes the quotation on each member of the list
on top of the stack.

---- end (step)


In [117]:
V('0 [1 2 3] [+] step')
              • 0 [1 2 3] [+] step
            0 • [1 2 3] [+] step
    0 [1 2 3] • [+] step
0 [1 2 3] [+] • step
      0 1 [+] • i [2 3] [+] step
          0 1 • + [2 3] [+] step
            1 • [2 3] [+] step
      1 [2 3] • [+] step
  1 [2 3] [+] • step
      1 2 [+] • i [3] [+] step
          1 2 • + [3] [+] step
            3 • [3] [+] step
        3 [3] • [+] step
    3 [3] [+] • step
      3 3 [+] • i
          3 3 • +
            6 • 

times¶

In [118]:
V('3 2 1 2 [+] times')
            • 3 2 1 2 [+] times
          3 • 2 1 2 [+] times
        3 2 • 1 2 [+] times
      3 2 1 • 2 [+] times
    3 2 1 2 • [+] times
3 2 1 2 [+] • times
      3 2 1 • + 1 [+] times
        3 3 • 1 [+] times
      3 3 1 • [+] times
  3 3 1 [+] • times
        3 3 • +
          6 • 

b¶

In [119]:
J('[b] help')
==== Help on b ====

::

        b == [i] dip i

        ... [P] [Q] b == ... [P] i [Q] i
        ... [P] [Q] b == ... P Q

---- end (b)


In [120]:
V('1 2 [3] [4] b')
            • 1 2 [3] [4] b
          1 • 2 [3] [4] b
        1 2 • [3] [4] b
    1 2 [3] • [4] b
1 2 [3] [4] • b
        1 2 • 3 4
      1 2 3 • 4
    1 2 3 4 • 

while¶

[predicate] [body] while
In [121]:
J('3 [0 >] [dup --] while')
3 2 1 0

x¶

In [122]:
J('[x] help')
==== Help on x ====

::

        x == dup i

        ... [Q] x = ... [Q] dup i
        ... [Q] x = ... [Q] [Q] i
        ... [Q] x = ... [Q]  Q

---- end (x)


In [123]:
V('1 [2] [i 3] x')  # Kind of a pointless example.
            • 1 [2] [i 3] x
          1 • [2] [i 3] x
      1 [2] • [i 3] x
1 [2] [i 3] • x
1 [2] [i 3] • i 3
      1 [2] • i 3 3
          1 • 2 3 3
        1 2 • 3 3
      1 2 3 • 3
    1 2 3 3 • 

void¶

Implements Laws of Form arithmetic over quote-only datastructures (that is, datastructures that consist soley of containers, without strings or numbers or anything else.)

In [124]:
J('[] void')
False
In [125]:
J('[[]] void')
True
In [126]:
J('[[][[]]] void')
True
In [127]:
J('[[[]][[][]]] void')
False