''' Let's grok division (and modulus.) For now we will deal with both positive (or at least of the same sign.) ''' def div_mod(A, B): ''' A and B are lists of digits, LSB->MSB. ''' if not A: return [], [] if not B: raise ZeroDivisionError() a_len, b_len = len(A), len(B) if a_len < b_len or A[-1] < B[-1]: return [], A # Whew! Okay, we got all that out of the way. # A > B A_digits = A[-b_len:] if -1 == cmp_digits(A_digits, B): # Because we know # A > B AND a_len >= b_len (aka len(A_digits)) # if A_digits < B there must be at least one more # digit in A: assert a_len > b_len A_digits = A[-(b_len + 1):] assert -1 < cmp_digits(A_digits, B) q, r = lil_divmod(A_digits, B) def lil_divmod(A, B): assert -1 < cmp_digits(A, B) assert A and B # There is a greatest digit between 0..9 such that: # B * digit <= A # The obvious thing to do here is a bisect search, # if we were really just doing 0..9 we could go linear. digit = 9 Q = mul_digit_by_list_of_digits(digit, B) while 1 == cmp_digits(Q, A): digit = digit - 1 if not digit: raise ValueError('huh?') Q = mul_digit_by_list_of_digits(digit, B) return digit, subtract(A, Q) def mul_digit_by_list_of_digits(digit, A): assert 0 <= digit <= 9 for n in A: assert 0 <= n <= 9 return int_to_list(list_to_int(A) * digit) def int_to_list(i): assert i >= 0 return list(map(int, str(i)[::-1])) def list_to_int(A): i = int(''.join(map(str, A[::-1]))) assert i >= 0 return i def cmp_digits(A, B): if len(A) > len(B): return 1 if len(A) < len(B): return -1 for a, b in zip(reversed(A), reversed(B)): if a > b: return 1 if a < b: return -1 else: return 0 def subtract(A, B): return int_to_list(list_to_int(A) - list_to_int(B)) ##A = int_to_list(123) ##B = int_to_list(72) ##print(A, B) ##Q = mul_digit_by_list_of_digits(9, A) ##print(Q) A = int_to_list(145) B = int_to_list(72) q, R = lil_divmod(A, B) print(f'divmod({list_to_int(A)}, {list_to_int(B)}) = ', q, list_to_int(R)) ##print(cmp_digits([], [])) ##print(cmp_digits([], [1])) ##print(cmp_digits([1], [])) ##print(cmp_digits([1], [1])) ##print(cmp_digits([0,1], [1]))