/* Copyright © 2018 Simon Forman This file is part of Thun Thun is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Thun is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Thun. If not see . */ :- use_module(library(assoc)). :- use_module(library(clpfd)). do :- Program = [ ヲ,∅,⟴,ヵ,メ,ョ, [グ,ケ,ゲ,ド,ゴ,サ],ヮ(cons), [ザ,シ],ヮ(dup), [グ,ス,[],[ジ,ス,[ズ,セ,ス,[ゼ,ソ],[タ,ゾ],ヰ,ヂ],ヱ],ヰ,チ],ヮ(i), [ヶ,ペ],ワ(new), [ナ,ズ,セ,ネ,ヒ,ド,ャ,ペ],ワ(swap), [new,cons],≡(unit), [dup,i],≡(x), [swap,cons],≡(swons) ], compile_program(Program, Binary), write_binary('joy_asm.bin', Binary). % phrase(pass0(Program, AST), [], _), % write_canonical(AST), % phrase(⟐(AST), IR), % write_canonical(IR), % phrase(linker(IR), ASM), % write_canonical(ASM). pass0(Code, Program) --> init, ⦾(Code, Program). init, [Context] --> {empty_assoc(C), empty_assoc(Dictionary), put_assoc(dictionary, C, Dictionary, Context)}. ⦾([], []) --> []. ⦾([Body, ≡(NameAtom)|Terms], [defi(Name, B, Prev, I, SP, TOS)|Ts]) --> get(dict, Prev), set(dict, Name), get(sp, SP), get(tos, TOS), inscribe(NameAtom, Name), ⦾(Terms, Ts), lookup(i, I), lookup(Body, B). ⦾([Body, ヮ(NameAtom)|Terms], [definition(Name, DONE, B, Prev)|Ts]) --> get(dict, Prev), set(dict, Name), inscribe(NameAtom, Name), get(done, DONE), ⦾([Body, Terms], [B, Ts]). ⦾([Body, ワ(NameAtom)|Terms], [definition(Name, MAIN, B, Prev)|Ts]) --> get(dict, Prev), set(dict, Name), inscribe(NameAtom, Name), get(main, MAIN), ⦾([Body, Terms], [B, Ts]). ⦾([P, T, E, ヰ|Terms], [br(Predicate, Then, Else)|Ts]) --> ⦾([P, T, E, Terms], [Predicate, Then, Else, Ts]). ⦾([P, B, ヱ|Terms], [repeat_until(Predicate, Body)|Ts]) --> ⦾([P, B, Terms], [Predicate, Body, Ts]). ⦾([ヲ|Terms], Ts) --> % Preamble. set(dict, 0), set(done, _DONE), set(temp0, 6), set(temp1, 7), set(temp2, 8), set(temp3, 9), set(tos, 3), set(sp, 2), set(expr, 4), set(term, 5), set(dict_top, 12), set(dict_ptr, 11), set(halt, _HALT), set(main, _MAIN), set(reset, _Reset), ⦾(Terms, Ts). ⦾([ヵ|Terms], [ % Initialization. jump(Over), % Oberon bootloader writes MemLim to RAM[12] and asm(allocate(_, 16)), % stackOrg to RAM[24], we don't need these label(Over), % but they must not be allowed to corrupt our code. set_reg_const(0, 0), % zero out the root cell. write_ram(0, 0), set_reg_const(SP, 0x1000), set_reg_const(EXPR, 0x500), set_reg_label(DICT_TOP, LastWord), set_reg_const(TOS, 0), set_reg_const(TERM, 0), asm(store_word(TOS, SP, 0)) % RAM[SP] := 0 |Ts]) --> get(dict_top, DICT_TOP), get(expr, EXPR), get(sp, SP), get(term, TERM), get(tos, TOS), ⦾(Terms, Ts), get(dict, LastWord). ⦾([メ|Terms], [ % Mainloop. label(MAIN), if_zero(EXPR, HALT), deref(EXPR), split_word(TERM, EXPR), if_literal(TERM, PUSH), lookup(DICT_PTR, DICT_TOP, TERM, HALT), % Jump to command or if not found halt. label(PUSH), push(TOS, TERM, SP), % stack = TERM, stack label(DONE), write_ram(SP, TOS), % RAM[SP] := TOS jump(MAIN) |Ts]) --> get(done, DONE), get(main, MAIN), get(halt, HALT), get(dict_ptr, DICT_PTR), get(dict_top, DICT_TOP), get(expr, EXPR), get(sp, SP), get(term, TERM), get(tos, TOS), ⦾(Terms, Ts). ⦾([Term|Terms], [T|Ts]) --> ⦾(Term, T), ⦾(Terms, Ts). ⦾(∅, dw(0)) --> []. ⦾(⟴, label(Reset)) --> get(reset, Reset). ⦾(ョ, halt(HALT)) --> get(halt, HALT). ⦾(グ, pop(TEMP0, TOS)) --> get(temp0, TEMP0), get(tos, TOS). ⦾(シ, push(TOS, TOS, SP)) --> get(tos, TOS), get(sp, SP). ⦾(ケ, high_half(TEMP1, TOS)) --> get(temp1, TEMP1), get(tos, TOS). ⦾(サ, merge(SP, TOS)) --> get(tos, TOS), get(sp, SP). ⦾(ザ, swap_halves(TOS)) --> get(tos, TOS). ⦾(ズ, deref(TEMP0)) --> get(temp0, TEMP0). ⦾(ス, if_zero(TEMP0)) --> get(temp0, TEMP0). ⦾(ソ, asm(mov(EXPR, TEMP3))) --> get(expr, EXPR), get(temp3, TEMP3). ⦾(ャ, asm(ior(TOS, TEMP1, SP))) --> get(tos, TOS), get(temp1, TEMP1), get(sp, SP). ⦾(タ, add_const(TEMP2, SP, 8)) --> get(temp2, TEMP2), get(sp, SP). ⦾(ジ, add_const(TEMP3, SP, 4)) --> get(temp3, TEMP3), get(sp, SP). ⦾(チ, add_const(SP, SP, 4)) --> get(sp, SP). ⦾(セ, chop_word(TEMP1, TEMP0)) --> get(temp0, TEMP0), get(temp1, TEMP1). ⦾(ト, chop_word(TEMP0, TOS)) --> get(temp0, TEMP0), get(tos, TOS). ⦾(ネ, chop_word(TEMP2, TOS)) --> get(temp2, TEMP2), get(tos, TOS). ⦾(ゼ, or_inplace(TEMP1, EXPR)) --> get(expr, EXPR), get(temp1, TEMP1). ⦾(ゲ, or_inplace(TEMP0, TEMP1)) --> get(temp0, TEMP0), get(temp1, TEMP1). ⦾(ヒ, or_inplace(TEMP0, TEMP2)) --> get(temp0, TEMP0), get(temp2, TEMP2). ⦾(ゾ, or_inplace(TEMP1, TEMP2)) --> get(temp1, TEMP1), get(temp2, TEMP2). ⦾(ド, write_cell(TEMP0, SP)) --> get(temp0, TEMP0), get(sp, SP). ⦾(ヂ, write_cell(TEMP1, SP)) --> get(temp1, TEMP1), get(sp, SP). ⦾(ペ, write_cell(TOS, SP)) --> get(tos, TOS), get(sp, SP). ⦾(ゴ, low_half(TOS)) --> get(tos, TOS). ⦾(ナ, low_half(TEMP0, TOS)) --> get(temp0, TEMP0), get(tos, TOS). ⦾(ヶ, low_half(TOS, SP)) --> get(sp, SP), get(tos, TOS). get(Key, Value) --> state(Context), {get_assoc(Key, Context, Value)}. set(Key, Value) --> state(ContextIn, ContextOut), {put_assoc(Key, ContextIn, Value, ContextOut)}. inscribe(NameAtom, Label) --> state(ContextIn, ContextOut), {get_assoc(dictionary, ContextIn, Din), put_assoc(NameAtom, Din, Label, Dout), put_assoc(dictionary, ContextIn, Dout, ContextOut)}. lookup([], []) --> !. lookup([T|Ts], [V|Vs]) --> !, lookup(T, V), lookup(Ts, Vs). lookup(NameAtom, Label) --> state(Context), {get_assoc(dictionary, Context, D), get_assoc(NameAtom, D, Label)}. state(S), [S] --> [S]. state(S0, S), [S] --> [S0]. ⟐([]) --> []. ⟐([Term|Terms]) --> ⟐(Term), ⟐(Terms). ⟐(if_literal(Reg, Label)) --> % commands marked by setting high bit. [and_imm(0, Reg, 0x8000), % 1 << 15 eq_offset(Label)]. % if reg = 0 jump to label. ⟐(if_zero(Reg, Label)) --> [sub_imm(Reg, Reg, 0), eq_offset(Label)]. ⟐(set_reg_const(Reg, Immediate)) --> {Immediate >= -(2^15), Immediate < 2^16}, !, [mov_imm(Reg, Immediate)]. ⟐(set_reg_const(Reg, Immediate)) --> {Immediate >= 0, Immediate < 2^33}, !, % FIXME: handle negative numbers. {high_half_word(Immediate, HighHalf), low_half_word(Immediate, LowHalf)}, [ mov_imm_with_shift(Reg, HighHalf), ior_imm(Reg, Reg, LowHalf)]. ⟐(set_reg_label(Reg, Label)) --> [mov_imm(Reg, Label)]. ⟐( noop) --> [mov(0, 0)]. ⟐( halt(Halt)) --> [label(Halt), do_offset(Halt)]. ⟐( asm(ASM)) --> [ASM]. ⟐(label(Label)) --> [label(Label)]. ⟐( jump(Label)) --> [do_offset(Label)]. ⟐( dw(Int)) --> [word(Int)]. ⟐( low_half(Reg)) --> [and_imm(Reg, Reg, 0xffff)]. ⟐( low_half(To, From)) --> [and_imm(To, From, 0xffff)]. ⟐( high_half(Reg)) --> [mov_imm_with_shift(0, 0xffff), and(Reg, Reg, 0)]. ⟐(high_half(To, From)) --> [mov_imm_with_shift(0, 0xffff), and(To, From, 0)]. ⟐(swap_halves(Register)) --> [ror_imm(Register, Register, 16)]. ⟐(swap_halves(To, From)) --> [ror_imm( To, From, 16)]. ⟐(high_half_to(To, From)) --> ⟐([swap_halves(To, From), low_half(To)]). ⟐(split_word(To, From)) --> ⟐([high_half_to(To, From), low_half(From)]). ⟐(chop_word(To, From)) --> ⟐([high_half(To, From), low_half(From)]). ⟐(merge(SP, TOS)) --> [lsl_imm(0, SP, 16), ior(TOS, TOS, 0), add_imm(SP, SP, 4)]. ⟐(push(TOS, TERM, SP)) --> [lsl_imm(TOS, TERM, 16), % TOS := TERM << 16 ior(TOS, TOS, SP), % TOS := TOS | SP add_imm(SP, SP, 4)]. % SP += 1 (word, not byte) ⟐( write_ram(To, From)) --> [store_word(From, To, 0)]. ⟐(write_cell(From, SP)) --> [add_imm(SP, SP, 4), store_word(From, SP, 0)]. ⟐(deref(Reg)) --> [load_word(Reg, Reg, 0)]. ⟐(or_inplace(To, From)) --> [ior(To, To, From)]. ⟐(definition(Label, Exit, Body, Prev)) --> ⟐([ dw(Prev), label(Label), Body, jump(Exit) ]). ⟐(defi(Label, Body, Prev, I, SP, TOS)) --> ⟐([dw(Prev), label(Label), defi_def(BodyLabel, SP, TOS), jump(I)]), dexpr(Body, BodyLabel). ⟐(defi_def(Label, SP, TOS)) --> [mov_imm_with_shift(TOS, Label), ior(TOS, TOS, SP)], ⟐(write_cell(TOS, SP)). ⟐(lookup(PTR, TOP, TERM, Exit)) --> [mov(PTR, TOP), % point to the top of the dictionary. label(Lookup), sub(0, TERM, PTR), eq(PTR), % if the term is found jump to it, sub_imm(PTR, PTR, 4), % else load the next pointer. load_word(PTR, PTR, 0), sub_imm(PTR, PTR, 0), eq_offset(Exit), % exit if it's zero. do_offset(Lookup)]. % loop to the top. ⟐(repeat_until(Condition, Body)) --> {add_label(Condition, End, ConditionL)}, ⟐([ label(Loop), Body, ConditionL, jump(Loop), label(End) ]). ⟐(br(Condition, [], Else)) --> !, {add_label(Condition, END, ConditionL)}, ⟐([ConditionL, Else, label(END)]). ⟐(br(Condition, Then, Else)) --> {add_label(Condition, THEN, ConditionL)}, ⟐([ ConditionL, Else, jump(END), label(THEN), Then, label(END) ]). ⟐(add_const(To, From, Immediate)) --> [add_imm(To, From, Immediate)]. ⟐(pop(Reg, TOS)) --> ⟐([split_word(Reg, TOS), deref(TOS)]). dexpr([], 0) --> []. dexpr([Func|Rest], ThisCell) --> [label(ThisCell), expr_cell(Func, NextCell)], dexpr(Rest, NextCell). add_label(CmpIn, Label, CmpOut) :- CmpIn =.. F, append(F, [Label], G), CmpOut =.. G. high_half_word(I, HighHalf) :- HighHalf is I >> 16 /\ 0xFFFF. low_half_word( I, LowHalf) :- LowHalf is I /\ 0xFFFF. compile_program(Program, Binary) :- phrase(pass0(Program, AST), [], _), phrase(⟐(AST), IR), phrase(linker(IR), ASM), phrase(asm(ASM), Binary). % Linker linker(IntermediateRepresentation) --> enumerate_asm(IntermediateRepresentation, 0, _). enumerate_asm( [], N, N) --> !, []. enumerate_asm( [Term|Terms], N, M) --> !, enumerate_asm(Term, N, O), enumerate_asm(Terms, O, M). enumerate_asm( label(N) , N, N) --> !, []. enumerate_asm(allocate(N, Bytes), N, M) --> !, [skip(Bits)], {align(N, Bytes, M), Bits is 8 * Bytes}. enumerate_asm( Instr, N, M) --> [(Z, Instr)], {align(N, 0, Z), align(Z, 4, M)}. align(_, Bytes, _) :- (Bytes < 0 -> write('Align negative number? No!')), !, fail. align(N, 1, M) :- !, M is N + 1. align(N, Bytes, M) :- N mod 4 =:= 0, !, M is N + Bytes. align(N, Bytes, M) :- Padding is 4 - (N mod 4), M is N + Bytes + Padding. % Assembler asm([]) --> !, []. asm([ skip(Bits)|Rest]) --> !, skip(Bits), asm(Rest). asm([(N, Instruction)|Rest]) --> !, asm(N, Instruction), asm(Rest). asm(_, expr_cell(Func, NextCell)) --> !, {Data is (Func << 16) \/ NextCell}, asm(_, word(Data)). asm(_, word(Word)) --> !, {binary_number(Bits, Word)}, collect(32, Bits). asm(_, load_word(A, B, Offset)) --> !, instruction_format_F2(0, 0, A, B, Offset). asm(_, load_byte(A, B, Offset)) --> !, instruction_format_F2(0, 1, A, B, Offset). asm(_, store_word(A, B, Offset)) --> !, instruction_format_F2(1, 0, A, B, Offset). asm(_, store_byte(A, B, Offset)) --> !, instruction_format_F2(1, 1, A, B, Offset). asm(_, mov(A, C)) --> instruction_format_F0(0, A, 0, mov, C). asm(_, mov_with_shift(A, C)) --> instruction_format_F0(1, A, 0, mov, C). asm(_, mov_imm_with_shift(A, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(1, 0, A, 0, mov, Imm). asm(_, mov_imm_with_shift(A, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(1, 0, A, 0, mov, Imm). asm(_, mov_imm_with_shift(_, _)) --> {write('Immediate value out of bounds'), fail}. asm(_, mov_imm(A, Imm) ) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, 0, mov, Imm). asm(_, mov_imm(A, Imm) ) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, 0, mov, Imm). asm(_, mov_imm(_, _) ) --> {write('Immediate value out of bounds'), fail}. asm(_, add(A, B, C)) --> instruction_format_F0(0, A, B, add, C). asm(_, add_carry(A, B, C)) --> instruction_format_F0(1, A, B, add, C). asm(_, sub(A, B, C)) --> instruction_format_F0(0, A, B, sub, C). asm(_, sub_carry(A, B, C)) --> instruction_format_F0(1, A, B, sub, C). asm(_, add_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, add, Imm). asm(_, add_imm(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(0, 0, A, B, add, Imm). asm(_, add_imm_carry(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(1, 1, A, B, add, Imm). asm(_, add_imm_carry(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(1, 0, A, B, add, Imm). asm(_, sub_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, sub, Imm). asm(_, sub_imm(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(0, 0, A, B, sub, Imm). asm(_, sub_imm_carry(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(1, 1, A, B, sub, Imm). asm(_, sub_imm_carry(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(1, 0, A, B, sub, Imm). asm(_, mul(A, B, C)) --> instruction_format_F0(0, A, B, mul, C). asm(_, mul_unsigned(A, B, C)) --> instruction_format_F0(1, A, B, mul, C). asm(_, mul_imm(A, B, Imm, U)) --> {neg_int15(Imm)}, !, instruction_format_F1(U, 1, A, B, mul, Imm). asm(_, mul_imm(A, B, Imm, U)) --> {pos_int15(Imm)}, !, instruction_format_F1(U, 0, A, B, mul, Imm). asm(_, and(A, B, C)) --> instruction_format_F0(0, A, B, and, C). asm(_, ann(A, B, C)) --> instruction_format_F0(0, A, B, ann, C). asm(_, asr(A, B, C)) --> instruction_format_F0(0, A, B, asr, C). asm(_, div(A, B, C)) --> instruction_format_F0(0, A, B, div, C). asm(_, ior(A, B, C)) --> instruction_format_F0(0, A, B, ior, C). asm(_, lsl(A, B, C)) --> instruction_format_F0(0, A, B, lsl, C). asm(_, ror(A, B, C)) --> instruction_format_F0(0, A, B, ror, C). asm(_, xor(A, B, C)) --> instruction_format_F0(0, A, B, xor, C). asm(_, and_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, and, Imm). asm(_, and_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, and, Imm). asm(_, ann_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, ann, Imm). asm(_, ann_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, ann, Imm). asm(_, asr_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, asr, Imm). asm(_, asr_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, asr, Imm). asm(_, div_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, div, Imm). asm(_, div_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, div, Imm). asm(_, ior_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, ior, Imm). asm(_, ior_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, ior, Imm). asm(_, lsl_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, lsl, Imm). asm(_, lsl_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, lsl, Imm). asm(_, ror_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, ror, Imm). asm(_, ror_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, ror, Imm). asm(_, xor_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, xor, Imm). asm(_, xor_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, xor, Imm). asm(_, cc(C)) --> instruction_format_F3a(0, cc, C). asm(N, cc_offset(Label)) --> instruction_format_F3b(0, cc, Label, N). asm(_, cc_link(C)) --> instruction_format_F3a(1, cc, C). asm(N, cc_link_offset(Label)) --> instruction_format_F3b(1, cc, Label, N). asm(_, cs(C)) --> instruction_format_F3a(0, cs, C). asm(N, cs_offset(Label)) --> instruction_format_F3b(0, cs, Label, N). asm(_, cs_link(C)) --> instruction_format_F3a(1, cs, C). asm(N, cs_link_offset(Label)) --> instruction_format_F3b(1, cs, Label, N). asm(_, do(C)) --> instruction_format_F3a(0, do, C). asm(N, do_offset(Label)) --> instruction_format_F3b(0, do, Label, N). asm(_, do_link(C)) --> instruction_format_F3a(1, do, C). asm(N, do_link_offset(Label)) --> instruction_format_F3b(1, do, Label, N). asm(_, eq(C)) --> instruction_format_F3a(0, eq, C). asm(N, eq_offset(Label)) --> instruction_format_F3b(0, eq, Label, N). asm(_, eq_link(C)) --> instruction_format_F3a(1, eq, C). asm(N, eq_link_offset(Label)) --> instruction_format_F3b(1, eq, Label, N). asm(_, ge(C)) --> instruction_format_F3a(0, ge, C). asm(N, ge_offset(Label)) --> instruction_format_F3b(0, ge, Label, N). asm(_, ge_link(C)) --> instruction_format_F3a(1, ge, C). asm(N, ge_link_offset(Label)) --> instruction_format_F3b(1, ge, Label, N). asm(_, gt(C)) --> instruction_format_F3a(0, gt, C). asm(N, gt_offset(Label)) --> instruction_format_F3b(0, gt, Label, N). asm(_, gt_link(C)) --> instruction_format_F3a(1, gt, C). asm(N, gt_link_offset(Label)) --> instruction_format_F3b(1, gt, Label, N). asm(_, hi(C)) --> instruction_format_F3a(0, hi, C). asm(N, hi_offset(Label)) --> instruction_format_F3b(0, hi, Label, N). asm(_, hi_link(C)) --> instruction_format_F3a(1, hi, C). asm(N, hi_link_offset(Label)) --> instruction_format_F3b(1, hi, Label, N). asm(_, le(C)) --> instruction_format_F3a(0, le, C). asm(N, le_offset(Label)) --> instruction_format_F3b(0, le, Label, N). asm(_, le_link(C)) --> instruction_format_F3a(1, le, C). asm(N, le_link_offset(Label)) --> instruction_format_F3b(1, le, Label, N). asm(_, ls(C)) --> instruction_format_F3a(0, ls, C). asm(N, ls_offset(Label)) --> instruction_format_F3b(0, ls, Label, N). asm(_, ls_link(C)) --> instruction_format_F3a(1, ls, C). asm(N, ls_link_offset(Label)) --> instruction_format_F3b(1, ls, Label, N). asm(_, lt(C)) --> instruction_format_F3a(0, lt, C). asm(N, lt_offset(Label)) --> instruction_format_F3b(0, lt, Label, N). asm(_, lt_link(C)) --> instruction_format_F3a(1, lt, C). asm(N, lt_link_offset(Label)) --> instruction_format_F3b(1, lt, Label, N). asm(_, mi(C)) --> instruction_format_F3a(0, mi, C). asm(N, mi_offset(Label)) --> instruction_format_F3b(0, mi, Label, N). asm(_, mi_link(C)) --> instruction_format_F3a(1, mi, C). asm(N, mi_link_offset(Label)) --> instruction_format_F3b(1, mi, Label, N). asm(_, ne(C)) --> instruction_format_F3a(0, ne, C). asm(N, ne_offset(Label)) --> instruction_format_F3b(0, ne, Label, N). asm(_, ne_link(C)) --> instruction_format_F3a(1, ne, C). asm(N, ne_link_offset(Label)) --> instruction_format_F3b(1, ne, Label, N). asm(_, nv(C)) --> instruction_format_F3a(0, nv, C). % NeVer. asm(N, nv_offset(Label)) --> instruction_format_F3b(0, nv, Label, N). asm(_, nv_link(C)) --> instruction_format_F3a(1, nv, C). asm(N, nv_link_offset(Label)) --> instruction_format_F3b(1, nv, Label, N). asm(_, pl(C)) --> instruction_format_F3a(0, pl, C). asm(N, pl_offset(Label)) --> instruction_format_F3b(0, pl, Label, N). asm(_, pl_link(C)) --> instruction_format_F3a(1, pl, C). asm(N, pl_link_offset(Label)) --> instruction_format_F3b(1, pl, Label, N). asm(_, vc(C)) --> instruction_format_F3a(0, vc, C). asm(N, vc_offset(Label)) --> instruction_format_F3b(0, vc, Label, N). asm(_, vc_link(C)) --> instruction_format_F3a(1, vc, C). asm(N, vc_link_offset(Label)) --> instruction_format_F3b(1, vc, Label, N). asm(_, vs(C)) --> instruction_format_F3a(0, vs, C). asm(N, vs_offset(Label)) --> instruction_format_F3b(0, vs, Label, N). asm(_, vs_link(C)) --> instruction_format_F3a(1, vs, C). asm(N, vs_link_offset(Label)) --> instruction_format_F3b(1, vs, Label, N). instruction_format_F0(U, A, B, Op, C ) --> [0, 0, U, 0], reg(A), reg(B), operation(Op), skip(12), reg(C). instruction_format_F1(U, V, A, B, Op, Im) --> [0, 1, U, V], reg(A), reg(B), operation(Op), immediate(Im). instruction_format_F2(U, V, A, B, Offset) --> [1, 0, U, V], reg(A), reg(B), offset(Offset). instruction_format_F3a(V, Cond, C ) --> [1, 1, 0, V], cond(Cond), skip(20), reg(C). instruction_format_F3b(V, Cond, To, Here) --> [1, 1, 1, V], cond(Cond), encode_jump_offset(To, Here). immediate(Imm) --> encode_int(16, Imm), !. offset(Offset) --> encode_int(20, Offset), !. skip(N) --> collect(N, Zeros), {Zeros ins 0..0}. encode_jump_offset(To, Here) --> {Offset is ((To - Here) >> 2) - 1}, encode_int(24, Offset). encode_int(Width, I) --> {I >= 0}, !, collect(Width, Bits), {binary_number(Bits, I)}, !. encode_int(Width, I) --> {I < 0}, !, collect(Width, Bits), {twos_compliment(Bits, I, Width)}, !. collect(N, []) --> {N =< 0}. collect(N, [X|Rest]) --> {N > 0, N0 is N - 1}, [X], collect(N0, Rest). reg( 0) --> [0, 0, 0, 0]. reg( 1) --> [0, 0, 0, 1]. reg( 2) --> [0, 0, 1, 0]. reg( 3) --> [0, 0, 1, 1]. reg( 4) --> [0, 1, 0, 0]. reg( 5) --> [0, 1, 0, 1]. reg( 6) --> [0, 1, 1, 0]. reg( 7) --> [0, 1, 1, 1]. reg( 8) --> [1, 0, 0, 0]. reg( 9) --> [1, 0, 0, 1]. reg(10) --> [1, 0, 1, 0]. reg(11) --> [1, 0, 1, 1]. reg(12) --> [1, 1, 0, 0]. reg(13) --> [1, 1, 0, 1]. reg(14) --> [1, 1, 1, 0]. reg(15) --> [1, 1, 1, 1]. operation(mov) --> [0, 0, 0, 0]. operation(lsl) --> [0, 0, 0, 1]. operation(asr) --> [0, 0, 1, 0]. operation(ror) --> [0, 0, 1, 1]. operation(and) --> [0, 1, 0, 0]. operation(ann) --> [0, 1, 0, 1]. operation(ior) --> [0, 1, 1, 0]. operation(xor) --> [0, 1, 1, 1]. operation(add) --> [1, 0, 0, 0]. operation(sub) --> [1, 0, 0, 1]. operation(mul) --> [1, 0, 1, 0]. operation(div) --> [1, 0, 1, 1]. operation(fad) --> [1, 1, 0, 0]. operation(fsb) --> [1, 1, 0, 1]. operation(fml) --> [1, 1, 1, 0]. operation(fdv) --> [1, 1, 1, 1]. cond(mi) --> [0, 0, 0, 0]. cond(eq) --> [0, 0, 0, 1]. cond(cs) --> [0, 0, 1, 0]. cond(vs) --> [0, 0, 1, 1]. cond(ls) --> [0, 1, 0, 0]. cond(lt) --> [0, 1, 0, 1]. cond(le) --> [0, 1, 1, 0]. cond(do) --> [0, 1, 1, 1]. cond(pl) --> [1, 0, 0, 0]. cond(ne) --> [1, 0, 0, 1]. cond(cc) --> [1, 0, 1, 0]. cond(vc) --> [1, 0, 1, 1]. cond(hi) --> [1, 1, 0, 0]. cond(ge) --> [1, 1, 0, 1]. cond(gt) --> [1, 1, 1, 0]. cond(nv) --> [1, 1, 1, 1]. pos_int16(I) :- I >= 0, I < 2^16. pos_int15(I) :- I >= 0, I < 2^15. neg_int15(I) :- I < 0, I >= -(2^15). int15(I) :- pos_int15(I) ; neg_int15(I). invert([], []). invert([1|Tail], [0|Lait]) :- invert(Tail, Lait). invert([0|Tail], [1|Lait]) :- invert(Tail, Lait). twos_compliment(Bits, Number, Width) :- X is abs(Number), binary_number(B, X), length(B, Width), invert(B, Antibits), binary_number(Antibits, Y), Z is Y+1, length(Bits, Width), binary_number(Bits, Z). % https://stackoverflow.com/a/28015816 canonical_binary_number([0], 0). canonical_binary_number([1], 1). canonical_binary_number([1|Bits], Number):- when(ground(Number), (Number > 1, Pow is floor(log(Number) / log(2)), Number1 is Number - 2 ^ Pow, ( Number1 > 1 -> Pow1 is floor(log(Number1) / log(2)) + 1 ; Pow1 = 1 ))), length(Bits, Pow), between(1, Pow, Pow1), length(Bits1, Pow1), append(Zeros, Bits1, Bits), maplist(=(0), Zeros), canonical_binary_number(Bits1, Number1), Number is Number1 + 2 ^ Pow. binary_number(Bits, Number):- canonical_binary_number(Bits, Number). binary_number([0|Bits], Number):- binary_number(Bits, Number). % Helper code to write the list of bits as a binary file. for_serial(Binary, Ser) :- length(Binary, LengthInBits), LengthInBytes is LengthInBits >> 3, skip(32, Caboose, []), % zero word to signal EOF to bootloader. append(Binary, Caboose, B), skip(32, G, B), % Address is zero. binary_number(Bits, LengthInBytes), collect(32, Bits, Ser, G). write_binary(Name, Binary) :- open(Name, write, Stream, [type(binary)]), phrase(write_binary_(Stream), Binary), close(Stream). write_binary_(Stream) --> % Handle "Endian-ness". collect(8, Bits3), collect(8, Bits2), collect(8, Bits1), collect(8, Bits0), !, {wb(Bits0, Stream), wb(Bits1, Stream), wb(Bits2, Stream), wb(Bits3, Stream)}, write_binary_(Stream). write_binary_(_) --> []. wb(Bits, Stream) :- binary_number(Bits, Byte), put_byte(Stream, Byte).