{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Advent of Code 2017\n", "\n", "## December 2nd\n", "\n", "For each row, determine the difference between the largest value and the smallest value; the checksum is the sum of all of these differences.\n", "\n", "For example, given the following spreadsheet:\n", "\n", " 5 1 9 5\n", " 7 5 3\n", " 2 4 6 8\n", "\n", "* The first row's largest and smallest values are 9 and 1, and their difference is 8.\n", "* The second row's largest and smallest values are 7 and 3, and their difference is 4.\n", "* The third row's difference is 6.\n", "\n", "In this example, the spreadsheet's checksum would be 8 + 4 + 6 = 18." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from notebook_preamble import J, V, define" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I'll assume the input is a Joy sequence of sequences of integers.\n", "\n", " [[5 1 9 5]\n", " [7 5 3]\n", " [2 4 6 8]]\n", "\n", "So, obviously, the initial form will be a `step` function:\n", "\n", " AoC2017.2 == 0 swap [F +] step" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This function `F` must get the `max` and `min` of a row of numbers and subtract. We can define a helper function `maxmin` which does this:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "define('maxmin == [max] [min] cleave')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3 1\n" ] } ], "source": [ "J('[1 2 3] maxmin')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then `F` just does that then subtracts the min from the max:\n", "\n", " F == maxmin -\n", "\n", "So:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "define('AoC2017.2 == [maxmin - +] step_zero')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "18\n" ] } ], "source": [ "J('''\n", "\n", "[[5 1 9 5]\n", " [7 5 3]\n", " [2 4 6 8]] AoC2017.2\n", "\n", "''')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "...find the only two numbers in each row where one evenly divides the other - that is, where the result of the division operation is a whole number. They would like you to find those numbers on each line, divide them, and add up each line's result.\n", "\n", "For example, given the following spreadsheet:\n", "\n", " 5 9 2 8\n", " 9 4 7 3\n", " 3 8 6 5\n", "\n", "* In the first row, the only two numbers that evenly divide are 8 and 2; the result of this division is 4.\n", "* In the second row, the two numbers are 9 and 3; the result is 3.\n", "* In the third row, the result is 2.\n", "\n", "In this example, the sum of the results would be 4 + 3 + 2 = 9.\n", "\n", "What is the sum of each row's result in your puzzle input?" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[9 8 5 2]\n" ] } ], "source": [ "J('[5 9 2 8] sort reverse')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[8 5 2] [9 divmod] [8 5 2]\n" ] } ], "source": [ "J('[9 8 5 2] uncons [swap [divmod] cons] dupdip')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", " [9 8 5 2] uncons [swap [divmod] cons F] dupdip G\n", " [8 5 2] [9 divmod] F [8 5 2] G\n", "\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " . [8 5 2] [9 divmod] [uncons swap] dip dup [i not] dip\n", " [8 5 2] . [9 divmod] [uncons swap] dip dup [i not] dip\n", " [8 5 2] [9 divmod] . [uncons swap] dip dup [i not] dip\n", " [8 5 2] [9 divmod] [uncons swap] . dip dup [i not] dip\n", " [8 5 2] . uncons swap [9 divmod] dup [i not] dip\n", " 8 [5 2] . swap [9 divmod] dup [i not] dip\n", " [5 2] 8 . [9 divmod] dup [i not] dip\n", " [5 2] 8 [9 divmod] . dup [i not] dip\n", " [5 2] 8 [9 divmod] [9 divmod] . [i not] dip\n", "[5 2] 8 [9 divmod] [9 divmod] [i not] . dip\n", " [5 2] 8 [9 divmod] . i not [9 divmod]\n", " [5 2] 8 . 9 divmod not [9 divmod]\n", " [5 2] 8 9 . divmod not [9 divmod]\n", " [5 2] 1 1 . not [9 divmod]\n", " [5 2] 1 False . [9 divmod]\n", " [5 2] 1 False [9 divmod] . \n" ] } ], "source": [ "V('[8 5 2] [9 divmod] [uncons swap] dip dup [i not] dip')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tricky\n", "\n", "Let's think.\n", "\n", "Given a *sorted* sequence (from highest to lowest) we want to \n", "* for head, tail in sequence\n", " * for term in tail:\n", " * check if the head % term == 0\n", " * if so compute head / term and terminate loop\n", " * else continue" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### So we want a `loop` I think\n", "\n", " [a b c d] True [Q] loop\n", " [a b c d] Q [Q] loop\n", "\n", "`Q` should either leave the result and False, or the `rest` and True.\n", "\n", " [a b c d] Q\n", " -----------------\n", " result 0\n", "\n", " [a b c d] Q\n", " -----------------\n", " [b c d] 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This suggests that `Q` should start with:\n", "\n", " [a b c d] uncons dup roll<\n", " [b c d] [b c d] a\n", "\n", "Now we just have to `pop` it if we don't need it.\n", "\n", " [b c d] [b c d] a [P] [T] [cons] app2 popdd [E] primrec\n", " [b c d] [b c d] [a P] [a T] [E] primrec\n", "\n", "-------------------\n", "\n", " w/ Q == [% not] [T] [F] primrec\n", "\n", " [a b c d] uncons\n", " a [b c d] tuck\n", " [b c d] a [b c d] uncons\n", " [b c d] a b [c d] roll>\n", " [b c d] [c d] a b Q\n", " [b c d] [c d] a b [% not] [T] [F] primrec\n", "\n", " [b c d] [c d] a b T\n", " [b c d] [c d] a b / roll> popop 0\n", "\n", " [b c d] [c d] a b F Q\n", " [b c d] [c d] a b pop swap uncons ... Q\n", " [b c d] [c d] a swap uncons ... Q\n", " [b c d] a [c d] uncons ... Q\n", " [b c d] a c [d] roll> Q\n", " [b c d] [d] a c Q\n", "\n", " Q == [% not] [/ roll> popop 0] [pop swap uncons roll>] primrec\n", " \n", " uncons tuck uncons roll> Q" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[8 5 3 2] [9 swap] [9 % not]\n" ] } ], "source": [ "J('[8 5 3 2] 9 [swap] [% not] [cons] app2 popdd')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "-------------------\n", "\n", " [a b c d] uncons\n", " a [b c d] tuck\n", " [b c d] a [b c d] [not] [popop 1] [Q] ifte\n", "\n", " [b c d] a [] popop 1\n", " [b c d] 1\n", "\n", " [b c d] a [b c d] Q \n", "\n", "\n", " a [...] Q\n", " ---------------\n", " result 0\n", "\n", " a [...] Q\n", " ---------------\n", " 1\n", "\n", "\n", " w/ Q == [first % not] [first / 0] [rest [not] [popop 1]] [ifte]\n", "\n", "\n", "\n", " a [b c d] [first % not] [first / 0] [rest [not] [popop 1]] [ifte]\n", " a [b c d] first % not\n", " a b % not\n", " a%b not\n", " bool(a%b)\n", "\n", " a [b c d] [first % not] [first / 0] [rest [not] [popop 1]] [ifte]\n", " a [b c d] first / 0\n", " a b / 0\n", " a/b 0\n", "\n", " a [b c d] [first % not] [first / 0] [rest [not] [popop 1]] [ifte]\n", " a [b c d] rest [not] [popop 1] [Q] ifte\n", " a [c d] [not] [popop 1] [Q] ifte\n", " a [c d] [not] [popop 1] [Q] ifte\n", "\n", " a [c d] [not] [popop 1] [Q] ifte\n", " a [c d] not\n", "\n", " a [] popop 1\n", " 1\n", "\n", " a [c d] Q\n", "\n", "\n", " uncons tuck [first % not] [first / 0] [rest [not] [popop 1]] [ifte]\n", " \n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### I finally sat down with a piece of paper and blocked it out.\n", "\n", "First, I made a function `G` that expects a number and a sequence of candidates and return the result or zero:\n", "\n", " n [...] G\n", " ---------------\n", " result\n", "\n", " n [...] G\n", " ---------------\n", " 0\n", "\n", "It's a recursive function that conditionally executes the recursive part of its recursive branch\n", "\n", " [Pg] [E] [R1 [Pi] [T]] [ifte] genrec\n", "\n", "The recursive branch is the else-part of the inner `ifte`:\n", "\n", " G == [Pg] [E] [R1 [Pi] [T]] [ifte] genrec\n", " == [Pg] [E] [R1 [Pi] [T] [G] ifte] ifte\n", "\n", "But this is in hindsight. Going forward I derived:\n", "\n", " G == [first % not]\n", " [first /]\n", " [rest [not] [popop 0]]\n", " [ifte] genrec\n", "\n", "The predicate detects if the `n` can be evenly divided by the `first` item in the list. If so, the then-part returns the result. Otherwise, we have:\n", "\n", " n [m ...] rest [not] [popop 0] [G] ifte\n", " n [...] [not] [popop 0] [G] ifte\n", "\n", "This `ifte` guards against empty sequences and returns zero in that case, otherwise it executes `G`." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "define('G == [first % not] [first /] [rest [not] [popop 0]] [ifte] genrec')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we need a word that uses `G` on each (head, tail) pair of a sequence until it finds a (non-zero) result. It's going to be designed to work on a stack that has some candidate `n`, a sequence of possible divisors, and a result that is zero to signal to continue (a non-zero value implies that it is the discovered result):\n", "\n", " n [...] p find-result\n", " ---------------------------\n", " result\n", "\n", "It applies `G` using `nullary` because if it fails with one candidate it needs the list to get the next one (the list is otherwise consumed by `G`.)\n", "\n", " find-result == [0 >] [roll> popop] [roll< popop uncons [G] nullary] primrec\n", "\n", " n [...] p [0 >] [roll> popop] [roll< popop uncons [G] nullary] primrec\n", "\n", "The base-case is trivial, return the (non-zero) result. The recursive branch...\n", "\n", " n [...] p roll< popop uncons [G] nullary find-result\n", " [...] p n popop uncons [G] nullary find-result\n", " [...] uncons [G] nullary find-result\n", " m [..] [G] nullary find-result\n", " m [..] p find-result\n", "\n", "The puzzle states that the input is well-formed, meaning that we can expect a result before the row sequence empties and so do not need to guard the `uncons`." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "define('find-result == [0 >] [roll> popop] [roll< popop uncons [G] nullary] primrec')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.0\n" ] } ], "source": [ "J('[11 9 8 7 3 2] 0 tuck find-result')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to get the thing started, we need to `sort` the list in descending order, then prime the `find-result` function with a dummy candidate value and zero (\"continue\") flag." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "define('prep-row == sort reverse 0 tuck')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can define our program." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "define('AoC20017.2.extra == [prep-row find-result +] step_zero')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9.0\n" ] } ], "source": [ "J('''\n", "\n", "[[5 9 2 8]\n", " [9 4 7 3]\n", " [3 8 6 5]] AoC20017.2.extra\n", "\n", "''')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 2 }