`Newton's method `__ ===================================================================== .. code:: ipython2 from notebook_preamble import J, V, define Cf. `"Why Functional Programming Matters" by John Hughes `__ :math:`a_{i+1} = \frac{(a_i+\frac{n}{a_i})}{2}` Let's define a function that computes the above equation: :: n a Q --------------- (a+n/a)/2 n a tuck / + 2 / a n a / + 2 / a n/a + 2 / a+n/a 2 / (a+n/a)/2 We want it to leave n but replace a, so we execute it with ``unary``: :: Q == [tuck / + 2 /] unary .. code:: ipython2 define('Q == [tuck / + 2 /] unary') And a function to compute the error: :: n a sqr - abs |n-a**2| This should be ``nullary`` so as to leave both n and a on the stack below the error. :: err == [sqr - abs] nullary .. code:: ipython2 define('err == [sqr - abs] nullary') Now we can define a recursive program that expects a number ``n``, an initial estimate ``a``, and an epsilon value ``ε``, and that leaves on the stack the square root of ``n`` to within the precision of the epsilon value. (Later on we'll refine it to generate the initial estimate and hard-code an epsilon value.) :: n a ε square-root ----------------- √n If we apply the two functions ``Q`` and ``err`` defined above we get the next approximation and the error on the stack below the epsilon. :: n a ε [Q err] dip n a Q err ε n a' err ε n a' e ε Let's define the recursive function from here. Start with ``ifte``; the predicate and the base case behavior are obvious: :: n a' e ε [<] [popop popd] [J] ifte Base-case :: n a' e ε popop popd n a' popd a' The recursive branch is pretty easy. Discard the error and recur. :: w/ K == [<] [popop popd] [J] ifte n a' e ε J n a' e ε popd [Q err] dip [K] i n a' ε [Q err] dip [K] i n a' Q err ε [K] i n a'' e ε K This fragment alone is pretty useful. .. code:: ipython2 define('K == [<] [popop popd] [popd [Q err] dip] primrec') .. code:: ipython2 J('25 10 0.001 dup K') .. parsed-literal:: 5.000000232305737 .. code:: ipython2 J('25 10 0.000001 dup K') .. parsed-literal:: 5.000000000000005 So now all we need is a way to generate an initial approximation and an epsilon value: :: square-root == dup 3 / 0.000001 dup K .. code:: ipython2 define('square-root == dup 3 / 0.000001 dup K') .. code:: ipython2 J('36 square-root') .. parsed-literal:: 6.000000000000007 .. code:: ipython2 J('4895048365636 square-root') .. parsed-literal:: 2212475.6192184356 .. code:: ipython2 2212475.6192184356 * 2212475.6192184356 .. parsed-literal:: 4895048365636.0