{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# [Newton's method](https://en.wikipedia.org/wiki/Newton%27s_method)\n", "Let's use the Newton-Raphson method for finding the root of an equation to write a function that can compute the square root of a number.\n", "\n", "Cf. [\"Why Functional Programming Matters\" by John Hughes](https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A Generator for Approximations\n", "\n", "To make a generator that generates successive approximations let’s start by assuming an initial approximation and then derive the function that computes the next approximation:\n", "\n", " a F\n", " ---------\n", " a'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A Function to Compute the Next Approximation\n", "\n", "This is the equation for computing the next approximate value of the square root:\n", "\n", "$a_{i+1} = \\frac{(a_i+\\frac{n}{a_i})}{2}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Starting with $\\frac{(a_i+\\frac{n}{a_i})}{2}$ we can derive the Joy expression to compute it using abstract dummy variables to stand in for actual values. First undivide by two:\n", "\n", "$(a_i+\\frac{n}{a_i})$ `2 /`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then unadd terms:\n", "\n", "$a_i$ $\\frac{n}{a_i}$ `+ 2 /`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Undivide again:\n", "\n", "$a_i$ $n$ $a_i$ `/ + 2 /`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally deduplicate the $a_i$ term:\n", "\n", "$a_i$ $n$ `over / + 2 /`" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try out this function `over / + 2 /` on an example:\n", "\n", " F == over / + 2 /" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [] } ], "source": [ "[F over / + 2 /] inscribe" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to use this function `F` we have to provide an initial estimate for the value of the square root, and we want to keep the input value `n` handy for iterations (we don't want the user to have to keep reentering it.)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 5 36 • F\n", " 5 36 • over / + 2 /\n", "5 36 5 • / + 2 /\n", " 5 7 • + 2 /\n", " 12 • 2 /\n", " 12 2 • /\n", " 6 • \n", "\n", "6" ] } ], "source": [ "clear\n", "\n", "5 36 [F] trace" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The initial estimate can be 2, and we can `cons` the input value onto a quote with `F`:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6" ] } ], "source": [ "[F1 2 swap [F] cons] inscribe" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 36 • F1\n", " 36 • 2 swap [F] cons\n", " 36 2 • swap [F] cons\n", " 2 36 • [F] cons\n", "2 36 [F] • cons\n", "2 [36 F] • \n", "\n", "2 [36 F]" ] } ], "source": [ "clear\n", "\n", "36 [F1] trace" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 2 • 36 F\n", " 2 36 • F\n", " 2 36 • over / + 2 /\n", "2 36 2 • / + 2 /\n", " 2 18 • + 2 /\n", " 20 • 2 /\n", " 20 2 • /\n", " 10 • \n", "\n", "10" ] } ], "source": [ "trace" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6" ] } ], "source": [ "36 F" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [] } ], "source": [ "clear" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2 [36 F] codireco]" ] } ], "source": [ "36 F1 make_generator" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6" ] } ], "source": [ "x x x first" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6 12" ] } ], "source": [ "144 F1 make_generator x x x x first" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2 [36 F]" ] } ], "source": [ "clear\n", "\n", "2 [36 F]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2 [36 F] false" ] } ], "source": [ "[first] [pop sqr] fork - abs 3 <" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10" ] } ], "source": [ "pop i" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 [36 F] false" ] } ], "source": [ "[36 F] [first] [pop sqr] fork - abs 3 <" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6" ] } ], "source": [ "pop i" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6 [36 F] true" ] } ], "source": [ "[36 F] [first] [pop sqr] fork - abs 3 <" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2" ] } ], "source": [ "clear\n", "\n", "2" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6" ] } ], "source": [ "[] true [i [36 F] [first] [pop sqr] fork - abs 3 >] loop pop" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12" ] } ], "source": [ "clear\n", "\n", "7 [] true [i [144 F] [first] [pop sqr] fork - abs 3 >] loop pop" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "120" ] } ], "source": [ "clear\n", "\n", "7 [] true [i [14400 F] [first] [pop sqr] fork - abs 3 >] loop pop" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "broken due to no float div\n", "\n", " clear\n", "\n", " 7 [] true [i [1000 F] [first] [pop sqr] fork - abs 10 >] loop pop" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Make it into a Generator\n", "\n", "Our generator would be created by:\n", "\n", " a [dup F] make_generator\n", "\n", "With n as part of the function F, but n is the input to the sqrt function we’re writing. If we let 1 be the initial approximation:\n", "\n", " 1 n 1 / + 2 /\n", " 1 n/1 + 2 /\n", " 1 n + 2 /\n", " n+1 2 /\n", " (n+1)/2\n", "\n", "The generator can be written as:\n", "\n", " 23 1 swap [over / + 2 /] cons [dup] swoncat make_generator\n", " 1 23 [over / + 2 /] cons [dup] swoncat make_generator\n", " 1 [23 over / + 2 /] [dup] swoncat make_generator\n", " 1 [dup 23 over / + 2 /] make_generator" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "define('gsra 1 swap [over / + 2 /] cons [dup] swoncat make_generator')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "J('23 gsra')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's drive the generator a few time (with the `x` combinator) and square the approximation to see how well it works..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "J('23 gsra 6 [x popd] times first sqr')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Finding Consecutive Approximations within a Tolerance\n", "\n", "From [\"Why Functional Programming Matters\" by John Hughes](https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf):\n", "\n", "\n", "> The remainder of a square root finder is a function _within_, which takes a tolerance and a list of approximations and looks down the list for two successive approximations that differ by no more than the given tolerance.\n", "\n", "(And note that by “list” he means a lazily-evaluated list.)\n", "\n", "Using the _output_ `[a G]` of the above generator for square root approximations, and further assuming that the first term a has been generated already and epsilon ε is handy on the stack...\n", "\n", " a [b G] ε within\n", " ---------------------- a b - abs ε <=\n", " b\n", "\n", "\n", " a [b G] ε within\n", " ---------------------- a b - abs ε >\n", " b [c G] ε within\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Predicate\n", "\n", " a [b G] ε [first - abs] dip <=\n", " a [b G] first - abs ε <=\n", " a b - abs ε <=\n", " a-b abs ε <=\n", " abs(a-b) ε <=\n", " (abs(a-b)<=ε)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "define('_within_P [first - abs] dip <=')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Base-Case\n", "\n", " a [b G] ε roll< popop first\n", " [b G] ε a popop first\n", " [b G] first\n", " b" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "define('_within_B roll< popop first')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Recur\n", "\n", " a [b G] ε R0 [within] R1\n", "\n", "1. Discard a.\n", "2. Use `x` combinator to generate next term from `G`.\n", "3. Run `within` with `i` (it is a \"tail-recursive\" function.)\n", "\n", "Pretty straightforward:\n", "\n", " a [b G] ε R0 [within] R1\n", " a [b G] ε [popd x] dip [within] i\n", " a [b G] popd x ε [within] i\n", " [b G] x ε [within] i\n", " b [c G] ε [within] i\n", " b [c G] ε within\n", "\n", " b [c G] ε within" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "define('_within_R [popd x] dip')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Setting up\n", "\n", "The recursive function we have defined so far needs a slight preamble: `x` to prime the generator and the epsilon value to use:\n", "\n", " [a G] x ε ...\n", " a [b G] ε ..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "define('within x 0.000000001 [_within_P] [_within_B] [_within_R] tailrec')\n", "define('sqrt gsra within')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Try it out..." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "J('36 sqrt')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "J('23 sqrt')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Check it." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "4.795831523312719**2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from math import sqrt\n", "\n", "sqrt(23)" ] } ], "metadata": { "kernelspec": { "display_name": "Joypy", "language": "", "name": "thun" }, "language_info": { "file_extension": ".joy", "mimetype": "text/plain", "name": "Joy" } }, "nbformat": 4, "nbformat_minor": 2 }