diff --git a/docs/sphinx_docs/_build/doctrees/environment.pickle b/docs/sphinx_docs/_build/doctrees/environment.pickle index f090715..6df9406 100644 Binary files a/docs/sphinx_docs/_build/doctrees/environment.pickle and b/docs/sphinx_docs/_build/doctrees/environment.pickle differ diff --git a/docs/sphinx_docs/_build/doctrees/notebooks/Newton-Raphson.doctree b/docs/sphinx_docs/_build/doctrees/notebooks/Newton-Raphson.doctree index 4a86f59..1367d10 100644 Binary files a/docs/sphinx_docs/_build/doctrees/notebooks/Newton-Raphson.doctree and b/docs/sphinx_docs/_build/doctrees/notebooks/Newton-Raphson.doctree differ diff --git a/docs/sphinx_docs/_build/html/_sources/notebooks/Newton-Raphson.rst.txt b/docs/sphinx_docs/_build/html/_sources/notebooks/Newton-Raphson.rst.txt index cb3f759..b580502 100644 --- a/docs/sphinx_docs/_build/html/_sources/notebooks/Newton-Raphson.rst.txt +++ b/docs/sphinx_docs/_build/html/_sources/notebooks/Newton-Raphson.rst.txt @@ -7,7 +7,7 @@ to write a function that can compute the square root of a number. Cf. `"Why Functional Programming Matters" by John Hughes `__ -.. code:: ipython3 +.. code:: python from notebook_preamble import J, V, define @@ -75,11 +75,11 @@ The generator can be written as: 1 [23 over / + 2 /] [dup] swoncat make_generator 1 [dup 23 over / + 2 /] make_generator -.. code:: ipython3 +.. code:: python define('gsra 1 swap [over / + 2 /] cons [dup] swoncat make_generator') -.. code:: ipython3 +.. code:: python J('23 gsra') @@ -92,7 +92,7 @@ The generator can be written as: Let's drive the generator a few time (with the ``x`` combinator) and square the approximation to see how well it works... -.. code:: ipython3 +.. code:: python J('23 gsra 6 [x popd] times first sqr') @@ -142,7 +142,7 @@ Predicate abs(a-b) ε <= (abs(a-b)<=ε) -.. code:: ipython3 +.. code:: python define('_within_P [first - abs] dip <=') @@ -156,7 +156,7 @@ Base-Case [b G] first b -.. code:: ipython3 +.. code:: python define('_within_B roll< popop first') @@ -184,7 +184,7 @@ Pretty straightforward: b [c G] ε within -.. code:: ipython3 +.. code:: python define('_within_R [popd x] dip') @@ -199,14 +199,14 @@ The recursive function we have defined so far needs a slight preamble: [a G] x ε ... a [b G] ε ... -.. code:: ipython3 +.. code:: python define('within x 0.000000001 [_within_P] [_within_B] [_within_R] tailrec') define('sqrt gsra within') Try it out... -.. code:: ipython3 +.. code:: python J('36 sqrt') @@ -216,7 +216,7 @@ Try it out... 6.0 -.. code:: ipython3 +.. code:: python J('23 sqrt') @@ -228,7 +228,7 @@ Try it out... Check it. -.. code:: ipython3 +.. code:: python 4.795831523312719**2 @@ -241,7 +241,7 @@ Check it. -.. code:: ipython3 +.. code:: python from math import sqrt diff --git a/docs/sphinx_docs/_build/html/notebooks/Newton-Raphson.html b/docs/sphinx_docs/_build/html/notebooks/Newton-Raphson.html index 0414a47..59279b8 100644 --- a/docs/sphinx_docs/_build/html/notebooks/Newton-Raphson.html +++ b/docs/sphinx_docs/_build/html/notebooks/Newton-Raphson.html @@ -40,7 +40,7 @@ to write a function that can compute the square root of a number.

Cf. “Why Functional Programming Matters” by John Hughes

-
from notebook_preamble import J, V, define
+
from notebook_preamble import J, V, define
 
@@ -92,10 +92,10 @@ function we’re writing. If we let 1 be the initial approximation:

1 [dup 23 over / + 2 /] make_generator
-
define('gsra 1 swap [over / + 2 /] cons [dup] swoncat make_generator')
+
define('gsra 1 swap [over / + 2 /] cons [dup] swoncat make_generator')
 
-
J('23 gsra')
+
J('23 gsra')
 
[1 [dup 23 over / + 2 /] codireco]
@@ -103,7 +103,7 @@ function we’re writing. If we let 1 be the initial approximation:

Let’s drive the generator a few time (with the x combinator) and square the approximation to see how well it works…

-
J('23 gsra 6 [x popd] times first sqr')
+
J('23 gsra 6 [x popd] times first sqr')
 
23.0000000001585
@@ -145,7 +145,7 @@ generated already and epsilon ε is handy on the stack…

(abs(a-b)<=ε)
-
define('_within_P [first - abs] dip <=')
+
define('_within_P [first - abs] dip <=')
 
@@ -157,7 +157,7 @@ generated already and epsilon ε is handy on the stack…

b
-
define('_within_B roll< popop first')
+
define('_within_B roll< popop first')
 
@@ -182,7 +182,7 @@ generated already and epsilon ε is handy on the stack…

b [c G] ε within
-
define('_within_R [popd x] dip')
+
define('_within_R [popd x] dip')
 
@@ -194,33 +194,33 @@ generated already and epsilon ε is handy on the stack…

a [b G] ε ...
-
define('within x 0.000000001 [_within_P] [_within_B] [_within_R] tailrec')
-define('sqrt gsra within')
+
define('within x 0.000000001 [_within_P] [_within_B] [_within_R] tailrec')
+define('sqrt gsra within')
 

Try it out…

-
J('36 sqrt')
+
J('36 sqrt')
 
6.0
 
-
J('23 sqrt')
+
J('23 sqrt')
 
4.795831523312719
 

Check it.

-
4.795831523312719**2
+
4.795831523312719**2
 
22.999999999999996
 
-
from math import sqrt
+
from math import sqrt
 
-sqrt(23)
+sqrt(23)
 
4.795831523312719
diff --git a/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst b/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst
index bbcbb73..be09155 100644
--- a/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst
+++ b/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst
@@ -533,10 +533,10 @@ machine transition table.
 
 Says, “Three or more 1’s and not ending in 01 nor composed of all 1’s.”
 
-.. figure:: attachment:omg.svg
-   :alt: omg.svg
+.. figure:: omg.svg
+   :alt: State Machine Graph
 
-   omg.svg
+   State Machine Graph
 
 Start at ``a`` and follow the transition arrows according to their
 labels. Accepting states have a double outline. (Graphic generated with