Minor cleanup; multiplication.

I forgot to commit after cleanup but before implementing multiplication
so this commit is kind of a mess.

Anyway, it works.  :D
This commit is contained in:
Simon Forman 2022-10-04 22:06:49 -07:00
parent 217adaa318
commit beafe3aff0
1 changed files with 191 additions and 111 deletions

View File

@ -1,13 +1,10 @@
from copy import copy
from random import randint
from itertools import zip_longest
from pprint import pprint as P
import unittest
def is_i32(n):
return -2**31 <= n < 2**31
class BigInt:
def __init__(self, initial=0):
@ -26,10 +23,6 @@ class BigInt:
def digitize(n):
if n < 0:
raise ValueError(f'Non-negative only: {n}')
#if not n:
# yield OberonInt(0)
# return # Not strictly needed as the following while
# # will not do anything for n == 0.
while n:
n, digit = divmod(n, 2**31)
yield OberonInt(digit)
@ -61,19 +54,79 @@ class BigInt:
other = BigInt(other)
if self.sign == other.sign:
return self.add_like_signs(other)
return self.add_unlike_signs(other)
def __sub__(self, other):
if not isinstance(other, BigInt):
other = BigInt(other)
#print(23)
#print(self.to_int(), '-', other.to_int())
z = copy(other)
z = BigInt(other)
else:
z = copy(other)
z.sign = not z.sign
#print(self.to_int(), '+', z.to_int(), 'sub')
return self + z
def __mul__(self, other):
if not isinstance(other, BigInt):
other = BigInt(other)
if len(self.digits) < len(other.digits):
return other.__mul__(self)
# We now multiple the digits of self by the digits of other.
#
# 128
# * 12
# ------
#
# 128
# * 2
# ------
# 8
# 2
# -
# 16
# 2|
# 2|
# -|
# 46
# carry1
# 56
# 1||
# 2||
# -||
# 256
#
# Hmm...
acc = BigInt()
for i, digit in enumerate(other.digits):
intermediate_result = self._mul_one_digit(i, digit)
#print(intermediate_result)
acc = acc + intermediate_result
acc.sign = not (self.sign ^ other.sign)
return acc
def _mul_one_digit(self, power, n):
# Some of this should go in a method of OberonInt?
out = [zero] * power
carry = zero
for digit in self.digits:
# In the Oberon RISC the high half of multiplication
# is put into the special H register.
H, product = digit * n
c, p = product + carry
out.append(p)
carry = H
if c:
z, carry = carry + one
assert not z, repr(z)
if carry.value:
assert carry.value > 0
out.append(carry)
result = BigInt()
result.digits = out
return result
def add_like_signs(self, other):
'''
Add a BigInt of the same sign as self.
@ -105,12 +158,7 @@ class BigInt:
# So we have -a and +b
# or +a and -b
if self.sign:
a, b = self, other
else:
b, a = self, other
#print(a.to_int(), '+', b.to_int(), 'add_unlike_signs')
a, b = (self, other) if self.sign else (other, self)
# So now we have:
# a + (-b) == a - b
@ -123,18 +171,9 @@ class BigInt:
#
# I.e. 9 - 17 == -(17 - 9)
#if abs(a) < abs(b):
if not a.abs_gt_abs(b):
#print(f'abs({a.to_int()}) < abs({b.to_int()})')
x = b._subtract_smaller(a)
#x.sign = not x.sign
return x
#print(f'abs({a.to_int()}) > abs({b.to_int()})')
return a._subtract_smaller(b)
return a._subtract_smaller(b) if a.abs_gt_abs(b) else b._subtract_smaller(a)
def _subtract_smaller(self, other):
assert self.abs_gt_abs(other)
out = []
carry = 0
Z = zip_longest(
@ -161,41 +200,12 @@ class BigInt:
return False
return self.digits[-1] > other.digits[-1]
def __eq__(self, other):
return self.sign == other.sign and self.digits == other.digits
## result = BigInt()
## result.sign = self.sign
## result.digits = (
## self.subtract_digits(other)
## if self.sign else
## other.subtract_digits(self)
## )
## return result
## def subtract_digits(self, other):
## return []
##def _sort_key(list_of_obint):
## n = len(list_of_obint)
## last = list_of_obint[-1] if n else None
## return n, zero
##def subtract_list_of_obints(A, B):
## L = [A, B]
## K = sorted(L, key=_sort_key)
## A, B = K
## swapped = L != K
## carry = 0
## out = []
## for a, b in zip_longest(A, B, fillvalue=zero):
## carry, digit = a.sub_with_carry(b, carry)
## out.append(digit)
## if carry:
## out.append(one)
## result = BigInt()
## result.sign = self.sign
## result.digits = out
## return result
def is_i32(n):
return -2**31 <= n < 2**31
class OberonInt:
@ -204,6 +214,10 @@ class OberonInt:
32-bit, two's complement.
'''
def __init__(self, initial=0):
assert is_i32(initial)
self.value = initial
def add_with_carry(self, other, carry):
'''
In terms of single base-10 skool arithmetic:
@ -221,27 +235,12 @@ class OberonInt:
return c, digit
def sub_with_carry(self, other, carry):
'''
In terms of single base-10 skool arithmetic:
a, b in {0..9}
carry in {0..1}
0 - 9 - 1
9 + 9 + 1 = 18 + 1 = 19
aka = 1,(8+1) = 1, 9
'''
c, digit = self - other
if carry:
z, digit = digit - one
assert not z, repr(z)
return c, digit
def __init__(self, initial=0):
assert is_i32(initial)
self.value = initial
def __add__(self, other):
'''
Return carry bit and new value.
@ -252,7 +251,7 @@ class OberonInt:
carry = not is_i32(n)
if carry:
n &= 2**31 - 1
return int(carry), OberonInt(n)
return carry, OberonInt(n)
__radd__ = __add__
@ -272,13 +271,47 @@ class OberonInt:
__rsub__ = __sub__
def __repr__(self):
#b = bin(self.value.value & (2**32-1))
return f'OberonInt({self.value})'
def __eq__(self, other):
assert isinstance(other, OberonInt)
return self.value == other.value
def __gt__(self, other):
assert isinstance(other, OberonInt)
return self.value > other.value
def __mul__(self, other):
assert isinstance(other, OberonInt)
product = self.value * other.value
high = OberonInt(product >> 31)
low = OberonInt(product & (2**31 - 1))
return high, low
## # I think we want to put the 32nd bit of product
## # into the first bit of H, left-shifting H by one first.
## c = (H << 1) & (product >> 31) # What about H[32]?
## product &= 0x7fffffff # Zero out that 32nd bit.
##
## if carry:
## digit += one
## >>> n = obmax.value
## >>> n*n
## 4611686014132420609
## >>> bin(n*n)
## '0b11111111111111111111111111111100000000000000000000000000000001'
## >>> bin(n)
## '0b1111111111111111111111111111111'
## >>> bin(0b1111111111111111111111111111111 * 0b1111111111111111111111111111111)
## '0b11111111111111111111111111111100000000000000000000000000000001'
## >>> '0b00_111111 11111111 11111111 11111111|00000000 00000000 00000000 00000001'
# So we can see that multiplying obmax by itself leave two empty bits in the top half
# If we perform the above c = (H << 1) & (product >> 31) we get:
# c = 0b0_1111111 11111111 11111111 11111110
# p = 0b_00000000 00000000 00000000 00000001'
obmin, zero, one, obmax = map(OberonInt, (
-(2**31),
@ -322,6 +355,18 @@ class OberonIntTest(unittest.TestCase):
self.assertTrue(carry)
self.assertEqual(n, zero)
def test_mul(self):
h, l = obmax * obmax
B = BigInt(obmax.value * obmax.value)
self.assertEqual([l, h], B.digits)
N = 100
rand = lambda: randint(0, 10**N) - (10**N)//2
# For some reason randint(-(10**100), 10**100) wasn't returning negative numbers.
# Above my pay grade. I don't even know if that's a bug,
# there are a /lot/ of numbers up around ten-to-the-hundreth-power, eh?
class BigIntTest(unittest.TestCase):
@ -340,29 +385,17 @@ class BigIntTest(unittest.TestCase):
def test_Addition(self):
n = 12345678901234567898090123445678990
m = 901234567898090
x = BigInt(n)
y = BigInt(m)
z = x + y
t = z.to_int()
self.assertEqual(t, n + m)
self._test_add(n, m)
def test_Addition_of_two_negatives(self):
n = -12345678901234567898090123445678990
m = -901234567898090
x = BigInt(n)
y = BigInt(m)
z = x + y
t = z.to_int()
self.assertEqual(t, n + m)
self._test_add(n, m)
def test_Addition_of_unlike_signs(self):
n = 12345678901234567898090123445678990
m = -901234567898090
x = BigInt(n)
y = BigInt(m)
z = x + y
t = z.to_int()
self.assertEqual(t, n + m)
self._test_add(n, m)
def _test_invert(self):
n = 7 * (2**16)
@ -377,31 +410,78 @@ class BigIntTest(unittest.TestCase):
def test_Subtraction_small_from_large(self):
n = 12345678901234567898090123445678990
m = 901234567898090
x = BigInt(n)
y = BigInt(m)
z = x - y
t = z.to_int()
self.assertEqual(t, n - m)
self._test_sub(n, m)
def test_Subtraction_large_from_small(self):
n = 901234567898090
m = 12345678901234567898090123445678990
self._test_sub(n, m)
def test_Subtraction_neg_small_from_large(self):
n = 12345678901234567898090123445678990
m = -901234567898090
self._test_sub(n, m)
def test_Subtraction_neg_large_from_small(self):
n = 901234567898090
m = -12345678901234567898090123445678990
self._test_sub(n, m)
def test_Subtraction_small_from_neg_large(self):
n = -12345678901234567898090123445678990
m = 901234567898090
self._test_sub(n, m)
def test_Subtraction_large_from_neg_small(self):
n = -901234567898090
m = 12345678901234567898090123445678990
self._test_sub(n, m)
def test_Subtraction_neg_small_from_neg_large(self):
n = -12345678901234567898090123445678990
m = -901234567898090
self._test_sub(n, m)
def test_Subtraction_neg_large_from_neg_small(self):
n = -901234567898090
m = -12345678901234567898090123445678990
self._test_sub(n, m)
def _test_add(self, n, m):
x = BigInt(n)
y = BigInt(m)
z = x + y
t = z.to_int()
self.assertEqual(t, n + m, f'{x} + {y}')
def _test_sub(self, n, m):
x = BigInt(n)
y = BigInt(m)
z = x - y
t = z.to_int()
self.assertEqual(t, n - m)
self.assertEqual(t, n - m, f'{x} - {y}')
def _test_mul(self, n, m):
x = BigInt(n)
y = BigInt(m)
z = x * y
t = z.to_int()
self.assertEqual(t, n * m, f'{x} * {y}')
def test_mul(self):
a = 2063400293
b = -1483898257
self._test_mul(a, b)
def test_random_add_sub(self):
for _ in range(100):
a = rand()
b = rand()
#print(a, b)
self._test_add(a, b)
self._test_sub(a, b)
self._test_mul(a, b)
if __name__ == '__main__':
unittest.main()
## if initial >= 2**31:
## raise ValueError(f'too big: {initial!r}')
## if initial < -2**31:
## raise ValueError(f'too small: {initial!r}')