Update some ref docs.

This commit is contained in:
Simon Forman 2022-03-23 21:25:22 -07:00
parent b3ddc52f9e
commit b13832b792
10 changed files with 897 additions and 1052 deletions

View File

@ -1,23 +1,24 @@
------------------------------------------------------------------------ ------------------------------------------------------------------------
## \<{} ## \<\{\}
Function Function
... a \<{} ... a <{}
---------------- ----------------
... [] a ... [] a
### Definition ### Definition
\[\] swap [] swap
### Discussion ### Discussion
Lorem ipsum. Tuck an empty list just under the first item on the stack.
### Crosslinks ### Crosslinks
Lorem ipsum. [<<{}](#section-18)

View File

@ -1,29 +1,25 @@
------------------------------------------------------------------------ ------------------------------------------------------------------------
## \<\<{} ## \<\<\{\}
Basis Function Combinator Function
\[\] rollup
Gentzen diagram. ... b a <{}
-----------------
... [] b a
### Definition ### Definition
if not basis. [] rollup
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. Tuck an empty list just under the first two items on the stack.
### Crosslinks ### Crosslinks
Lorem ipsum. [<{}](#section-16)

View File

@ -2,28 +2,20 @@
## ? ## ?
Basis Function Combinator Function
dup bool Is the item on the top of the stack "truthy"?
Gentzen diagram.
### Definition ### Definition
if not basis. > [dup](#dup) [bool](#bool)
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. You often want to test the truth value of an item on the stack without
consuming the item.
### Crosslinks ### Crosslinks
Lorem ipsum. [bool](#bool)

View File

@ -2,28 +2,31 @@
## \|\| ## \|\|
Basis Function Combinator Combinator
nulco \[nullary\] dip \[true\] branch Short-circuiting Boolean OR
Gentzen diagram.
### Definition ### Definition
if not basis. > [nulco](#nulco) \[[nullary](#nullary)\] [dip](#dip) \[true\] [branch](#branch)
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. Accept two quoted programs, run the first and expect a Boolean value, if
its `false` pop it and run the second program (which should also return a
Boolean value) otherwise pop the second program (leaving `true` on the
stack.)
[A] [B] ||
---------------- A -> false
B
[A] [B] ||
---------------- A -> true
true
### Crosslinks ### Crosslinks
Lorem ipsum. [&&](#section-1)

View File

@ -2,28 +2,11 @@
## abs ## abs
Basis Function Combinator Function
Return the absolute value of the argument. Return the absolute value of the argument.
Gentzen diagram.
### Definition ### Definition
if not basis. > \[0 <\] \[0 [swap](#swap) -\] \[\] [ifte](#ifte)
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.

View File

@ -2,28 +2,7 @@
## add ## add
Basis Function Combinator Basis Function
Same as a + b. Add two numbers together: a + b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.

View File

@ -2,28 +2,26 @@
## anamorphism ## anamorphism
Basis Function Combinator Combinator
\[pop \[\]\] swap \[dip swons\] genrec Build a list of values from a generator program `G` and a stopping
predicate `P`.
Gentzen diagram. [P] [G] anamorphism
-----------------------------------------
[P] [pop []] [G] [dip swons] genrec
### Definition ### Definition
if not basis. > \[[pop](#pop) \[\]\] [swap](#swap) \[[dip](#dip) [swons](#swons)\] [genrec](#genrec)
### Derivation ### Example
if not basis. The `range` function generates a list of the integers from 0 to n - 1:
### Source > \[0 <=\] \[\-\- dup\] anamorphism
if basis
### Discussion ### Discussion
Lorem ipsum. See the [Recursion Combinators notebook](https://joypy.osdn.io/notebooks/Recursion_Combinators.html).
### Crosslinks
Lorem ipsum.

View File

@ -2,27 +2,10 @@
## and ## and
Basis Function Combinator Basis Function
Same as a & b. Logical bit-wise AND.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks ### Crosslinks

File diff suppressed because it is too large Load Diff

View File

@ -175,27 +175,28 @@ See [ne](#ne).
------------------------------------------------------------------------ ------------------------------------------------------------------------
## \<{} ## \<\{\}
Function Function
... a \<{} ... a <{}
---------------- ----------------
... [] a ... [] a
### Definition ### Definition
\[\] swap [] swap
### Discussion ### Discussion
Lorem ipsum. Tuck an empty list just under the first item on the stack.
### Crosslinks ### Crosslinks
Lorem ipsum. [<<{}](#section-18)
-------------- --------------
@ -206,33 +207,29 @@ See [lshift](#lshift).
------------------------------------------------------------------------ ------------------------------------------------------------------------
## \<\<{} ## \<\<\{\}
Basis Function Combinator Function
\[\] rollup
Gentzen diagram. ... b a <{}
-----------------
... [] b a
### Definition ### Definition
if not basis. [] rollup
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. Tuck an empty list just under the first two items on the stack.
### Crosslinks ### Crosslinks
Lorem ipsum. [<{}](#section-16)
-------------- --------------
@ -259,31 +256,23 @@ See [succ](#succ).
## ? ## ?
Basis Function Combinator Function
dup bool Is the item on the top of the stack "truthy"?
Gentzen diagram.
### Definition ### Definition
if not basis. > [dup](#dup) [bool](#bool)
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. You often want to test the truth value of an item on the stack without
consuming the item.
### Crosslinks ### Crosslinks
Lorem ipsum. [bool](#bool)
-------------- --------------
@ -310,147 +299,93 @@ See [floordiv](#floordiv).
## \|\| ## \|\|
Basis Function Combinator Combinator
nulco \[nullary\] dip \[true\] branch Short-circuiting Boolean OR
Gentzen diagram.
### Definition ### Definition
if not basis. > [nulco](#nulco) \[[nullary](#nullary)\] [dip](#dip) \[true\] [branch](#branch)
### Derivation
if not basis.
### Source
if basis
### Discussion ### Discussion
Lorem ipsum. Accept two quoted programs, run the first and expect a Boolean value, if
its `false` pop it and run the second program (which should also return a
Boolean value) otherwise pop the second program (leaving `true` on the
stack.)
[A] [B] ||
---------------- A -> false
B
[A] [B] ||
---------------- A -> true
true
### Crosslinks ### Crosslinks
Lorem ipsum. [&&](#section-1)
------------------------------------------------------------------------ ------------------------------------------------------------------------
## abs ## abs
Basis Function Combinator Function
Return the absolute value of the argument. Return the absolute value of the argument.
Gentzen diagram.
### Definition ### Definition
if not basis. > \[0 <\] \[0 [swap](#swap) -\] \[\] [ifte](#ifte)
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------ ------------------------------------------------------------------------
## add ## add
Basis Function Combinator Basis Function
Same as a + b. Add two numbers together: a + b.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------ ------------------------------------------------------------------------
## anamorphism ## anamorphism
Basis Function Combinator Combinator
\[pop \[\]\] swap \[dip swons\] genrec Build a list of values from a generator program `G` and a stopping
predicate `P`.
Gentzen diagram. [P] [G] anamorphism
-----------------------------------------
[P] [pop []] [G] [dip swons] genrec
### Definition ### Definition
if not basis. > \[[pop](#pop) \[\]\] [swap](#swap) \[[dip](#dip) [swons](#swons)\] [genrec](#genrec)
### Derivation ### Example
if not basis. The `range` function generates a list of the integers from 0 to n - 1:
### Source > \[0 <=\] \[\-\- dup\] anamorphism
if basis
### Discussion ### Discussion
Lorem ipsum. See the [Recursion Combinators notebook](https://joypy.osdn.io/notebooks/Recursion_Combinators.html).
### Crosslinks
Lorem ipsum.
------------------------------------------------------------------------ ------------------------------------------------------------------------
## and ## and
Basis Function Combinator Basis Function
Same as a & b. Logical bit-wise AND.
Gentzen diagram.
### Definition
if not basis.
### Derivation
if not basis.
### Source
if basis
### Discussion
Lorem ipsum.
### Crosslinks ### Crosslinks