Type Inference of Joy Expressions¶
+Two kinds of type inference are provided, a simple inferencer that can handle functions that have a single stack effect (aka “type signature”) and that can generate Python code for a limited subset of those functions, and a more complex inferencer/interpreter hybrid that can infer the stack effects of most Joy expressions, including multiple stack effects, unbounded sequences of values, and combinators (if enough information is available.)
+joy.utils.types¶
+Curently (asterix after name indicates a function that can be auto-compiled to Python):
+_Tree_add_Ee = ([a4 a5 ...1] a3 a2 a1 -- [a2 a3 ...1]) *
+_Tree_delete_R0 = ([a2 ...1] a1 -- [a2 ...1] a2 a1 a1) *
+_Tree_delete_clear_stuff = (a3 a2 [a1 ...1] -- [...1]) *
+_Tree_get_E = ([a3 a4 ...1] a2 a1 -- a4) *
+add = (n1 n2 -- n3)
+and = (b1 b2 -- b3)
+bool = (a1 -- b1)
+ccons = (a2 a1 [...1] -- [a2 a1 ...1]) *
+cons = (a1 [...0] -- [a1 ...0]) *
+div = (n1 n2 -- n3)
+divmod = (n2 n1 -- n4 n3)
+dup = (a1 -- a1 a1) *
+dupd = (a2 a1 -- a2 a2 a1) *
+dupdd = (a3 a2 a1 -- a3 a3 a2 a1) *
+eq = (n1 n2 -- b1)
+first = ([a1 ...1] -- a1) *
+first_two = ([a1 a2 ...1] -- a1 a2) *
+floordiv = (n1 n2 -- n3)
+fourth = ([a1 a2 a3 a4 ...1] -- a4) *
+ge = (n1 n2 -- b1)
+gt = (n1 n2 -- b1)
+le = (n1 n2 -- b1)
+lshift = (n1 n2 -- n3)
+lt = (n1 n2 -- b1)
+modulus = (n1 n2 -- n3)
+mul = (n1 n2 -- n3)
+ne = (n1 n2 -- b1)
+neg = (n1 -- n2)
+not = (a1 -- b1)
+over = (a2 a1 -- a2 a1 a2) *
+pm = (n2 n1 -- n4 n3)
+pop = (a1 --) *
+popd = (a2 a1 -- a1) *
+popdd = (a3 a2 a1 -- a2 a1) *
+popop = (a2 a1 --) *
+popopd = (a3 a2 a1 -- a1) *
+popopdd = (a4 a3 a2 a1 -- a2 a1) *
+pow = (n1 n2 -- n3)
+pred = (n1 -- n2)
+rest = ([a1 ...0] -- [...0]) *
+rolldown = (a1 a2 a3 -- a2 a3 a1) *
+rollup = (a1 a2 a3 -- a3 a1 a2) *
+rrest = ([a1 a2 ...1] -- [...1]) *
+rshift = (n1 n2 -- n3)
+second = ([a1 a2 ...1] -- a2) *
+sqrt = (n1 -- n2)
+stack = (... -- ... [...]) *
+stuncons = (... a1 -- ... a1 a1 [...]) *
+stununcons = (... a2 a1 -- ... a2 a1 a1 a2 [...]) *
+sub = (n1 n2 -- n3)
+succ = (n1 -- n2)
+swaack = ([...1] -- [...0]) *
+swap = (a1 a2 -- a2 a1) *
+swons = ([...1] a1 -- [a1 ...1]) *
+third = ([a1 a2 a3 ...1] -- a3) *
+truediv = (n1 n2 -- n3)
+tuck = (a2 a1 -- a1 a2 a1) *
+uncons = ([a1 ...0] -- a1 [...0]) *
+unit = (a1 -- [a1 ]) *
+unswons = ([a1 ...1] -- [...1] a1) *
+-
+
-
+class
joy.utils.types.AnyJoyType(number)[source]¶
+ Joy type variable. Represents any Joy value.
+
-
+
-
+
joy.utils.types.compilable(f)[source]¶
+ Return True if a stack effect represents a function that can be +automatically compiled (to Python), False otherwise.
+
-
+
-
+
joy.utils.types.compile_(name, f, doc=None)[source]¶
+ Return a string of Python code implementing the function described +by the stack effect. If no doc string is passed doc_from_stack_effect() +is used to generate one.
+
-
+
-
+
joy.utils.types.compose(*functions)[source]¶
+ Return the stack effect of the composition of some of stack effects.
+
-
+
-
+
joy.utils.types.delabel(f, seen=None, c=None)[source]¶
+ Fix up type variable numbers after relabel().
+
-
+
-
+
joy.utils.types.doc_from_stack_effect(inputs, outputs)[source]¶
+ Return a crude string representation of a stack effect.
+
-
+
-
+
joy.utils.types.relabel(left, right)[source]¶
+ Re-number type variables to avoid collisions between stack effects.
+
joy.utils.polytypes¶
+Example output of the infer() function. The first number on each line is the depth of the Python stack. It goes down when the function backtracks. The next thing on each line is the currently-computed stack effect so far. It starts with the empty “identity function” and proceeds through the expression, which is the rest of each line. The function acts like an interpreter but instead of executing the terms of the expression it composes them, but for combinators it does execute them, using the output side of the stack effect as the stack. This seems to work fine. With proper definitions for the behavior of the combinators that can have more than one effect (like branch or loop) the infer() function seems to be able to handle anything I throw at it so far.
7 (--) ∘ pop swap rolldown rest rest cons cons
+ 10 (a1 --) ∘ swap rolldown rest rest cons cons
+ 13 (a3 a2 a1 -- a2 a3) ∘ rolldown rest rest cons cons
+ 16 (a4 a3 a2 a1 -- a2 a3 a4) ∘ rest rest cons cons
+ 19 ([a4 ...1] a3 a2 a1 -- a2 a3 [...1]) ∘ rest cons cons
+ 22 ([a4 a5 ...1] a3 a2 a1 -- a2 a3 [...1]) ∘ cons cons
+ 25 ([a4 a5 ...1] a3 a2 a1 -- a2 [a3 ...1]) ∘ cons
+ 28 ([a4 a5 ...1] a3 a2 a1 -- [a2 a3 ...1]) ∘
+----------------------------------------
+([a4 a5 ...1] a3 a2 a1 -- [a2 a3 ...1])
+Here’s another example (implementing ifte) using some combinators:
7 (--) ∘ [pred] [mul] [div] [nullary bool] dipd branch
+ 8 (-- [pred ...2]) ∘ [mul] [div] [nullary bool] dipd branch
+ 9 (-- [pred ...2] [mul ...3]) ∘ [div] [nullary bool] dipd branch
+ 10 (-- [pred ...2] [mul ...3] [div ...4]) ∘ [nullary bool] dipd branch
+ 11 (-- [pred ...2] [mul ...3] [div ...4] [nullary bool ...5]) ∘ dipd branch
+ 15 (-- [pred ...5]) ∘ nullary bool [mul] [div] branch
+ 19 (-- [pred ...2]) ∘ [stack] dinfrirst bool [mul] [div] branch
+ 20 (-- [pred ...2] [stack ]) ∘ dinfrirst bool [mul] [div] branch
+ 22 (-- [pred ...2] [stack ]) ∘ dip infra first bool [mul] [div] branch
+ 26 (--) ∘ stack [pred] infra first bool [mul] [div] branch
+ 29 (... -- ... [...]) ∘ [pred] infra first bool [mul] [div] branch
+ 30 (... -- ... [...] [pred ...1]) ∘ infra first bool [mul] [div] branch
+ 34 (--) ∘ pred s1 swaack first bool [mul] [div] branch
+ 37 (n1 -- n2) ∘ [n1] swaack first bool [mul] [div] branch
+ 38 (... n1 -- ... n2 [n1 ...]) ∘ swaack first bool [mul] [div] branch
+ 41 (... n1 -- ... n1 [n2 ...]) ∘ first bool [mul] [div] branch
+ 44 (n1 -- n1 n2) ∘ bool [mul] [div] branch
+ 47 (n1 -- n1 b1) ∘ [mul] [div] branch
+ 48 (n1 -- n1 b1 [mul ...1]) ∘ [div] branch
+ 49 (n1 -- n1 b1 [mul ...1] [div ...2]) ∘ branch
+ 53 (n1 -- n1) ∘ div
+ 56 (f2 f1 -- f3) ∘
+ 56 (i1 f1 -- f2) ∘
+ 56 (f1 i1 -- f2) ∘
+ 56 (i2 i1 -- f1) ∘
+ 53 (n1 -- n1) ∘ mul
+ 56 (f2 f1 -- f3) ∘
+ 56 (i1 f1 -- f2) ∘
+ 56 (f1 i1 -- f2) ∘
+ 56 (i2 i1 -- i3) ∘
+----------------------------------------
+(f2 f1 -- f3)
+(i1 f1 -- f2)
+(f1 i1 -- f2)
+(i2 i1 -- f1)
+(i2 i1 -- i3)
+Multiple Stack Effects
+By adjusting the machinery in types.py to handles lists of stack effect comments +we can capture more information about the type signatures of some functions, +and we can introduce a kind of Kleene Star or sequence type that can stand for +an unbounded sequence of other types.
+-
+
-
+class
joy.utils.polytypes.AnyStarJoyType(number)[source]¶
+ -
+
-
+
kind¶
+ alias of
+joy.utils.types.AnyJoyType
-
+
-
+
-
+class
joy.utils.polytypes.CombinatorJoyType(name, sec, number, expect=None)[source]¶
+ Represent combinators.
+These type variables carry Joy functions that implement the +behaviour of Joy combinators and they can appear in expressions. +For simple combinators the implementation functions can be the +combinators themselves.
+These types can also specify a stack effect (input side only) to +guard against being used on invalid types.
+
-
+
-
+class
joy.utils.polytypes.KleeneStar(number)[source]¶
+ A sequence of zero or more AnyJoyType variables would be:
++
+A*The A* works by splitting the universe into two alternate histories:
++
+A* -> 0
+A* -> A A*
+The Kleene star variable disappears in one universe, and in the other +it turns into an AnyJoyType variable followed by itself again.
+We have to return all universes (represented by their substitution +dicts, the “unifiers”) that don’t lead to type conflicts.
+-
+
-
+
kind¶
+ alias of
+joy.utils.types.AnyJoyType
-
+
-
+
-
+class
joy.utils.polytypes.NumberStarJoyType(number)[source]¶
+ -
+
-
+
kind¶
+ alias of
+joy.utils.types.NumberJoyType
-
+
-
+
-
+
joy.utils.polytypes.Ss= [s1*, s2*, s3*, s4*, s5*, s6*, s7*, s8*, s9*, s10*]¶
+ Docstring for functions in Sphinx?
+
-
+
-
+class
joy.utils.polytypes.StackStarJoyType(number)[source]¶
+ -
+
-
+
kind¶
+ alias of
+joy.utils.types.StackJoyType
-
+
-
+
-
+class
joy.utils.polytypes.SymbolJoyType(name, sec, number)[source]¶
+ Represent non-combinator functions.
+These type variables carry the stack effect comments and can +appear in expressions (as in quoted programs.)
+
-
+
-
+
joy.utils.polytypes.compose(f, g, e)[source]¶
+ Yield the stack effects of the composition of two stack effects. An +expression is carried along and updated and yielded.
+
-
+
-
+
joy.utils.polytypes.defs()[source]¶
+ Return a dict of FunctionJoyType instances to be used with
+infer().
-
+
-
+
joy.utils.polytypes.infer(*expression)[source]¶
+ Return a list of stack effects for a Joy expression.
+For example:
+++h = infer(pop, swap, rolldown, rest, rest, cons, cons) +for fi, fo in h: + print doc_from_stack_effect(fi, fo) +
Prints:
+++([a4 a5 ...1] a3 a2 a1 -- [a2 a3 ...1]) +
+