Minor cleanup.

I feel like I should keep the un-partially-reduced thun/4 but
you can still read it, and the reduced forms are more efficient.
(And not too much more wordy.)
This commit is contained in:
Simon Forman 2020-01-26 16:50:49 -08:00
parent 76de590d27
commit ab0a378b56
1 changed files with 71 additions and 28 deletions

View File

@ -97,8 +97,7 @@ thun(Expression, InputStack, OutputStack)
thun([], S, S).
thun([Term|E], Si, So) :- thun(Term, E, Si, So).
/* Original code. Partial reduction is used to generate the
actual relations, see below.
/* Original code.
thun( int(I), E, Si, So) :- thun(E, [ int(I)|Si], So).
thun(bool(B), E, Si, So) :- thun(E, [bool(B)|Si], So).
@ -107,45 +106,41 @@ thun([Term|E], Si, So) :- thun(Term, E, Si, So).
thun(symbol(Func), E, Si, So) :- func(Func, Si, S), thun(E, S, So).
thun(symbol(Combo), E, Si, So) :- combo(Combo, Si, S, E, Eo), thun(Eo, S, So).
*/
Partial reduction is used to generate the actual thun/4 rules, see below. */
% Machine-generated thun/4 rules.
% Literals okay.
% Literals turn out okay.
thun(int(A), [], B, [int(A)|B]).
thun(int(A), [], B, [int(A)|B]).
thun(int(C), [A|B], D, E) :- thun(A, B, [int(C)|D], E).
thun(bool(A), [], B, [bool(A)|B]).
thun(bool(A), [], B, [bool(A)|B]).
thun(bool(C), [A|B], D, E) :- thun(A, B, [bool(C)|D], E).
thun(list(A), [], B, [list(A)|B]).
thun(list(A), [], B, [list(A)|B]).
thun(list(C), [A|B], D, E) :- thun(A, B, [list(C)|D], E).
% def/2 works but...
thun(symbol(A), C, F, G) :-
def(A, B),
append(B, C, [D|E]),
thun(D, E, F, G).
/* def/2 works...
% We want something like...
% thun(symbol(B), [], A, D) :- def(B, [H|C]), thun(H, C, A, D).
% thun(symbol(A), [H|E0], Si, So) :-
% def(A, [DH|DE]),
% append(DE, [H|E0], E),
% thun(DH, E, Si, So).
thun(symbol(A), C, F, G) :-
def(A, B),
append(B, C, [D|E]),
thun(D, E, F, G).
... but we want something like this: */
thun(symbol(B), [], A, D) :- def(B, [DH|DE]), thun(DH, DE, A, D).
thun(symbol(A), [H|E0], Si, So) :- def(A, [DH|DE]),
append(DE, [H|E0], E), /* ................. */ thun(DH, E, Si, So).
% And func/3 works too,
thun(symbol(A), [], B, C) :- func(A, B, C).
thun(symbol(A), [], B, C) :- func(A, B, C).
thun(symbol(A), [C|D], B, F) :- func(A, B, E), thun(C, D, E, F).
% Combo is all messed up.
% thun(symbol(A), D, B, C) :- combo(A, B, C, D, []).
% thun(symbol(A), C, B, G) :- combo(A, B, F, C, [D|E]), thun(D, E, F, G).
thun(symbol(Combo), [], Si, So) :- combo(Combo, Si, S, [], Eo), thun(Eo, S, So).
thun(symbol(Combo), [Term|Expr0], Si, So) :-
combo(Combo, Si, S, [Term|Expr0], Eo),
thun(Eo, S, So).
thun(symbol(Combo), Ei, Si, So) :- combo(Combo, Si, S, Ei, Eo), thun(Eo, S, So).
% Some error handling.
thun(symbol(Unknown), _, _, _) :-
@ -413,7 +408,7 @@ process(Program, ReducedProgram) :-
preduce( (A :- B), (Pa :- Pb) ) :- !, preduce(B, Pb), preduce(A, Pa).
preduce( true, true ) :- !.
preduce( (A, B), Residue ) :- !, preduce(A, Pa), preduce(B, Pb), combine(Pa, Pb, Residue).
preduce( A, B ) :- should_fold(A, B), !.
% preduce( A, B ) :- should_fold(A, B), !.
preduce( A, Residue ) :- should_unfold(A), !, clause(A, B), preduce(B, Residue).
preduce( A, A ).
@ -421,8 +416,6 @@ combine(true, B, B) :- !.
combine(A, true, A) :- !.
combine(A, B, (A, B)).
should_fold(z, a). % Just a "No Op" appease the linter.
%-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
/* Partial reduction of thun/3 in the thun/4 relation gives a new
version of thun/4 that is tail-recursive. You generate the new
@ -435,7 +428,7 @@ should_fold(z, a). % Just a "No Op" appease the linter.
should_unfold(thun(_, _, _)).
% should_unfold(func(_, _, _)).
should_unfold(def(_, _)).
% should_unfold(def(_, _)).
thunder([ % Source code for thun/4.
(thun( int(I), E, Si, So) :- thun(E, [ int(I)|Si], So)),
@ -446,3 +439,53 @@ thunder([ % Source code for thun/4.
(thun(symbol(Combo), E, Si, So) :- combo(Combo, Si, S, E, Eo), thun(Eo, S, So))
]).
/* (N.B.: in 'thun(symbol(Def)...' the last clause has changed from thun/3 to thun/4.
The earlier version doesn't transform into correct code:
thun(symbol(B), D, A, A) :- def(B, C), append(C, D, []).
thun(symbol(A), C, F, G) :- def(A, B), append(B, C, [D|E]), thun(D, E, F, G).
With the change to thun/4 it doesn't transform under reduction w/ thun/3.
)
You can also unfold def/2 and func/3 (but you need to check for bugs!)
Functions become clauses like these:
thun(symbol(rolldown), [], [C, A, B|D], [A, B, C|D]).
thun(symbol(rolldown), [A|B], [E, C, D|F], G) :- thun(A, B, [C, D, E|F], G).
thun(symbol(dupd), [], [A, B|C], [A, B, B|C]).
thun(symbol(dupd), [A|B], [C, D|E], F) :- thun(A, B, [C, D, D|E], F).
thun(symbol(over), [], [B, A|C], [A, B, A|C]).
thun(symbol(over), [A|B], [D, C|E], F) :- thun(A, B, [C, D, C|E], F).
Definitions become
thun(symbol(of), A, D, E) :-
append([symbol(swap), symbol(at)], A, [B|C]),
thun(B, C, D, E).
thun(symbol(pam), A, D, E) :-
append([list([symbol(i)]), symbol(map)], A, [B|C]),
thun(B, C, D, E).
thun(symbol(popd), A, D, E) :-
append([list([symbol(pop)]), symbol(dip)], A, [B|C]),
thun(B, C, D, E).
These are tail-recursive and allow for better indexing so I would expect
them to be more efficient than the originals. Ii would be even nicer to
get them looking like this:
thun(symbol(of), A, D, E) :- thun(symbol(swap), [symbol(at)|A], D, E).
And then if 'swap' was a definition you could push it out even further,
you could pre-expand definitions and functions (and maybe even some
combinators!)
*/