From 3f40e30c6fa9670d54164ae29108809f249678a8 Mon Sep 17 00:00:00 2001 From: Simon Forman Date: Fri, 19 Nov 2021 13:57:36 -0800 Subject: [PATCH] Convert syntax highlighter spec. --- .../Derivatives_of_Regular_Expressions.rst | 56 ++--- docs/sphinx_docs/notebooks/Developing.rst | 70 +++--- .../notebooks/Generator_Programs.rst | 76 +++--- docs/sphinx_docs/notebooks/Intro.rst | 14 +- .../notebooks/Ordered_Binary_Trees.rst | 98 ++++---- docs/sphinx_docs/notebooks/Quadratic.rst | 8 +- .../notebooks/Recursion_Combinators.rst | 48 ++-- docs/sphinx_docs/notebooks/Replacing.rst | 10 +- docs/sphinx_docs/notebooks/Treestep.rst | 48 ++-- docs/sphinx_docs/notebooks/TypeChecking.rst | 30 +-- docs/sphinx_docs/notebooks/Types.rst | 228 +++++++++--------- docs/sphinx_docs/notebooks/Zipper.rst | 36 +-- 12 files changed, 361 insertions(+), 361 deletions(-) diff --git a/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst b/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst index 29dc9fb..bbcbb73 100644 --- a/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst +++ b/docs/sphinx_docs/notebooks/Derivatives_of_Regular_Expressions.rst @@ -76,7 +76,7 @@ E.g.: Implementation -------------- -.. code:: ipython2 +.. code:: python from functools import partial as curry from itertools import product @@ -86,7 +86,7 @@ Implementation The empty set and the set of just the empty string. -.. code:: ipython2 +.. code:: python phi = frozenset() # ϕ y = frozenset({''}) # λ @@ -101,7 +101,7 @@ alphabet with two symbols (if you had to.) I chose the names ``O`` and ``l`` (uppercase “o” and lowercase “L”) to look like ``0`` and ``1`` (zero and one) respectively. -.. code:: ipython2 +.. code:: python syms = O, l = frozenset({'0'}), frozenset({'1'}) @@ -123,7 +123,7 @@ expression* is one of: Where ``R`` and ``S`` stand for *regular expressions*. -.. code:: ipython2 +.. code:: python AND, CONS, KSTAR, NOT, OR = 'and cons * not or'.split() # Tags are just strings. @@ -133,7 +133,7 @@ only, these datastructures are immutable. String Representation of RE Datastructures ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def stringy(re): ''' @@ -175,11 +175,11 @@ Match anything. Often spelled “.” I = (0|1)* -.. code:: ipython2 +.. code:: python I = (KSTAR, (OR, O, l)) -.. code:: ipython2 +.. code:: python print stringy(I) @@ -201,14 +201,14 @@ The example expression from Brzozowski: Note that it contains one of everything. -.. code:: ipython2 +.. code:: python a = (CONS, I, (CONS, l, (CONS, l, (CONS, l, I)))) b = (CONS, I, (CONS, O, l)) c = (CONS, l, (KSTAR, l)) it = (AND, a, (NOT, (OR, b, c))) -.. code:: ipython2 +.. code:: python print stringy(it) @@ -223,7 +223,7 @@ Note that it contains one of everything. Let’s get that auxiliary predicate function ``δ`` out of the way. -.. code:: ipython2 +.. code:: python def nully(R): ''' @@ -263,7 +263,7 @@ This is the straightforward version with no “compaction”. It works fine, but does waaaay too much work because the expressions grow each derivation. -.. code:: ipython2 +.. code:: python def D(symbol): @@ -308,7 +308,7 @@ derivation. Compaction Rules ~~~~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def _compaction_rule(relation, one, zero, a, b): return ( @@ -320,7 +320,7 @@ Compaction Rules An elegant symmetry. -.. code:: ipython2 +.. code:: python # R ∧ I = I ∧ R = R # R ∧ ϕ = ϕ ∧ R = ϕ @@ -341,7 +341,7 @@ We can save re-processing by remembering results we have already computed. RE datastructures are immutable and the ``derv()`` functions are *pure* so this is fine. -.. code:: ipython2 +.. code:: python class Memo(object): @@ -365,7 +365,7 @@ With “Compaction” This version uses the rules above to perform compaction. It keeps the expressions from growing too large. -.. code:: ipython2 +.. code:: python def D_compaction(symbol): @@ -414,7 +414,7 @@ Let’s try it out… (FIXME: redo.) -.. code:: ipython2 +.. code:: python o, z = D_compaction('0'), D_compaction('1') REs = set() @@ -605,20 +605,20 @@ You can see the one-way nature of the ``g`` state and the ``hij`` “trap” in the way that the ``.111.`` on the left-hand side of the ``&`` disappears once it has been matched. -.. code:: ipython2 +.. code:: python from collections import defaultdict from pprint import pprint from string import ascii_lowercase -.. code:: ipython2 +.. code:: python d0, d1 = D_compaction('0'), D_compaction('1') ``explore()`` ~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def explore(re): @@ -645,7 +645,7 @@ disappears once it has been matched. return table, accepting -.. code:: ipython2 +.. code:: python table, accepting = explore(it) table @@ -678,7 +678,7 @@ disappears once it has been matched. -.. code:: ipython2 +.. code:: python accepting @@ -697,7 +697,7 @@ Generate Diagram Once we have the FSM table and the set of accepting states we can generate the diagram above. -.. code:: ipython2 +.. code:: python _template = '''\ digraph finite_state_machine { @@ -722,7 +722,7 @@ generate the diagram above. ) ) -.. code:: ipython2 +.. code:: python print make_graph(table, accepting) @@ -776,7 +776,7 @@ Trampoline Function Python has no GOTO statement but we can fake it with a “trampoline” function. -.. code:: ipython2 +.. code:: python def trampoline(input_, jump_from, accepting): I = iter(input_) @@ -793,7 +793,7 @@ Stream Functions Little helpers to process the iterator of our data (a “stream” of “1” and “0” characters, not bits.) -.. code:: ipython2 +.. code:: python getch = lambda I: int(next(I)) @@ -816,7 +816,7 @@ code. (You have to imagine that these are GOTO statements in C or branches in assembly and that the state names are branch destination labels.) -.. code:: ipython2 +.. code:: python a = lambda I: c if getch(I) else b b = lambda I: _0(I) or d @@ -833,12 +833,12 @@ Note that the implementations of ``h`` and ``g`` are identical ergo ``h = g`` and we could eliminate one in the code but ``h`` is an accepting state and ``g`` isn’t. -.. code:: ipython2 +.. code:: python def acceptable(input_): return trampoline(input_, a, {h, i}) -.. code:: ipython2 +.. code:: python for n in range(2**5): s = bin(n)[2:] diff --git a/docs/sphinx_docs/notebooks/Developing.rst b/docs/sphinx_docs/notebooks/Developing.rst index 5b9314b..556225a 100644 --- a/docs/sphinx_docs/notebooks/Developing.rst +++ b/docs/sphinx_docs/notebooks/Developing.rst @@ -12,7 +12,7 @@ As an example of developing a program in Joy let's take the first problem from t Find the sum of all the multiples of 3 or 5 below 1000. -.. code:: ipython2 +.. code:: python from notebook_preamble import J, V, define @@ -22,11 +22,11 @@ Sum a range filtered by a predicate Let's create a predicate that returns ``True`` if a number is a multiple of 3 or 5 and ``False`` otherwise. -.. code:: ipython2 +.. code:: python define('P == [3 % not] dupdip 5 % not or') -.. code:: ipython2 +.. code:: python V('80 P') @@ -108,11 +108,11 @@ the counter to the running sum. This function will do that: PE1.1 == + [+] dupdip -.. code:: ipython2 +.. code:: python define('PE1.1 == + [+] dupdip') -.. code:: ipython2 +.. code:: python V('0 0 3 PE1.1') @@ -131,7 +131,7 @@ the counter to the running sum. This function will do that: 3 3 . -.. code:: ipython2 +.. code:: python V('0 0 [3 2 1 3 1 2 3] [PE1.1] step') @@ -219,7 +219,7 @@ total to 60. How many multiples to sum? ^^^^^^^^^^^^^^^^^^^^^^^^^^ -.. code:: ipython2 +.. code:: python 1000 / 15 @@ -232,7 +232,7 @@ How many multiples to sum? -.. code:: ipython2 +.. code:: python 66 * 15 @@ -245,7 +245,7 @@ How many multiples to sum? -.. code:: ipython2 +.. code:: python 1000 - 990 @@ -260,7 +260,7 @@ How many multiples to sum? We only want the terms *less than* 1000. -.. code:: ipython2 +.. code:: python 999 - 990 @@ -276,11 +276,11 @@ We only want the terms *less than* 1000. That means we want to run the full list of numbers sixty-six times to get to 990 and then the first four numbers 3 2 1 3 to get to 999. -.. code:: ipython2 +.. code:: python define('PE1 == 0 0 66 [[3 2 1 3 1 2 3] [PE1.1] step] times [3 2 1 3] [PE1.1] step pop') -.. code:: ipython2 +.. code:: python J('PE1') @@ -305,7 +305,7 @@ integer terms from the list. 3 2 1 3 1 2 3 0b 11 10 01 11 01 10 11 == 14811 -.. code:: ipython2 +.. code:: python 0b11100111011011 @@ -318,11 +318,11 @@ integer terms from the list. -.. code:: ipython2 +.. code:: python define('PE1.2 == [3 & PE1.1] dupdip 2 >>') -.. code:: ipython2 +.. code:: python V('0 0 14811 PE1.2') @@ -349,7 +349,7 @@ integer terms from the list. 3 3 3702 . -.. code:: ipython2 +.. code:: python V('3 3 3702 PE1.2') @@ -376,7 +376,7 @@ integer terms from the list. 8 5 925 . -.. code:: ipython2 +.. code:: python V('0 0 14811 7 [PE1.2] times pop') @@ -518,11 +518,11 @@ integer terms from the list. And so we have at last: -.. code:: ipython2 +.. code:: python define('PE1 == 0 0 66 [14811 7 [PE1.2] times pop] times 14811 4 [PE1.2] times popop') -.. code:: ipython2 +.. code:: python J('PE1') @@ -542,17 +542,17 @@ Let's refactor 14811 n [PE1.2] times pop n 14811 swap [PE1.2] times pop -.. code:: ipython2 +.. code:: python define('PE1.3 == 14811 swap [PE1.2] times pop') Now we can simplify the definition above: -.. code:: ipython2 +.. code:: python define('PE1 == 0 0 66 [7 PE1.3] times 4 PE1.3 pop') -.. code:: ipython2 +.. code:: python J('PE1') @@ -581,11 +581,11 @@ then four more. In the *Generator Programs* notebook we derive a generator that can be repeatedly driven by the ``x`` combinator to produce a stream of the seven numbers repeating over and over again. -.. code:: ipython2 +.. code:: python define('PE1.terms == [0 swap [dup [pop 14811] [] branch [3 &] dupdip 2 >>] dip rest cons]') -.. code:: ipython2 +.. code:: python J('PE1.terms 21 [x] times') @@ -598,7 +598,7 @@ produce a stream of the seven numbers repeating over and over again. We know from above that we need sixty-six times seven then four more terms to reach up to but not over one thousand. -.. code:: ipython2 +.. code:: python J('7 66 * 4 +') @@ -611,7 +611,7 @@ terms to reach up to but not over one thousand. Here they are... ~~~~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python J('PE1.terms 466 [x] times pop') @@ -624,7 +624,7 @@ Here they are... ...and they do sum to 999. ~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python J('[PE1.terms 466 [x] times pop] run sum') @@ -638,7 +638,7 @@ Now we can use ``PE1.1`` to accumulate the terms as we go, and then ``pop`` the generator and the counter from the stack when we're done, leaving just the sum. -.. code:: ipython2 +.. code:: python J('0 0 PE1.terms 466 [x [PE1.1] dip] times popop') @@ -654,7 +654,7 @@ A little further analysis renders iteration unnecessary. Consider finding the sum of the positive integers less than or equal to ten. -.. code:: ipython2 +.. code:: python J('[10 9 8 7 6 5 4 3 2 1] sum') @@ -686,11 +686,11 @@ positive integers is: (The formula also works for odd values of N, I'll leave that to you if you want to work it out or you can take my word for it.) -.. code:: ipython2 +.. code:: python define('F == dup ++ * 2 floordiv') -.. code:: ipython2 +.. code:: python V('10 F') @@ -727,7 +727,7 @@ And ending with: If we reverse one of these two blocks and sum pairs... -.. code:: ipython2 +.. code:: python J('[3 5 6 9 10 12 15] reverse [978 980 981 984 985 987 990] zip') @@ -737,7 +737,7 @@ If we reverse one of these two blocks and sum pairs... [[978 15] [980 12] [981 10] [984 9] [985 6] [987 5] [990 3]] -.. code:: ipython2 +.. code:: python J('[3 5 6 9 10 12 15] reverse [978 980 981 984 985 987 990] zip [sum] map') @@ -750,7 +750,7 @@ If we reverse one of these two blocks and sum pairs... (Interesting that the sequence of seven numbers appears again in the rightmost digit of each term.) -.. code:: ipython2 +.. code:: python J('[ 3 5 6 9 10 12 15] reverse [978 980 981 984 985 987 990] zip [sum] map sum') @@ -771,7 +771,7 @@ additional unpaired terms between 990 and 1000: So we can give the "sum of all the multiples of 3 or 5 below 1000" like so: -.. code:: ipython2 +.. code:: python J('6945 33 * [993 995 996 999] cons sum') diff --git a/docs/sphinx_docs/notebooks/Generator_Programs.rst b/docs/sphinx_docs/notebooks/Generator_Programs.rst index 55e1679..a59df18 100644 --- a/docs/sphinx_docs/notebooks/Generator_Programs.rst +++ b/docs/sphinx_docs/notebooks/Generator_Programs.rst @@ -3,7 +3,7 @@ Using ``x`` to Generate Values Cf. jp-reprod.html -.. code:: ipython2 +.. code:: python from notebook_preamble import J, V, define @@ -57,7 +57,7 @@ We can make a generator for the Natural numbers (0, 1, 2, …) by using Let’s try it: -.. code:: ipython2 +.. code:: python V('[0 swap [dup ++] dip rest cons] x') @@ -81,7 +81,7 @@ Let’s try it: After one application of ``x`` the quoted program contains ``1`` and ``0`` is below it on the stack. -.. code:: ipython2 +.. code:: python J('[0 swap [dup ++] dip rest cons] x x x x x pop') @@ -94,11 +94,11 @@ After one application of ``x`` the quoted program contains ``1`` and ``direco`` ---------- -.. code:: ipython2 +.. code:: python define('direco == dip rest cons') -.. code:: ipython2 +.. code:: python V('[0 swap [dup ++] direco] x') @@ -149,13 +149,13 @@ Reading from the bottom up: G == [direco] cons [swap] swap concat cons G == [direco] cons [swap] swoncat cons -.. code:: ipython2 +.. code:: python define('G == [direco] cons [swap] swoncat cons') Let’s try it out: -.. code:: ipython2 +.. code:: python J('0 [dup ++] G') @@ -165,7 +165,7 @@ Let’s try it out: [0 swap [dup ++] direco] -.. code:: ipython2 +.. code:: python J('0 [dup ++] G x x x pop') @@ -178,7 +178,7 @@ Let’s try it out: Powers of 2 ~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python J('1 [dup 1 <<] G x x x x x x x x x pop') @@ -194,7 +194,7 @@ Powers of 2 If we have one of these quoted programs we can drive it using ``times`` with the ``x`` combinator. -.. code:: ipython2 +.. code:: python J('23 [dup ++] G 5 [x] times') @@ -226,11 +226,11 @@ int: And pick them off by masking with 3 (binary 11) and then shifting the int right two bits. -.. code:: ipython2 +.. code:: python define('PE1.1 == dup [3 &] dip 2 >>') -.. code:: ipython2 +.. code:: python V('14811 PE1.1') @@ -252,7 +252,7 @@ int right two bits. If we plug ``14811`` and ``[PE1.1]`` into our generator form… -.. code:: ipython2 +.. code:: python J('14811 [PE1.1] G') @@ -264,7 +264,7 @@ If we plug ``14811`` and ``[PE1.1]`` into our generator form… …we get a generator that works for seven cycles before it reaches zero: -.. code:: ipython2 +.. code:: python J('[14811 swap [PE1.1] direco] 7 [x] times') @@ -280,11 +280,11 @@ Reset at Zero We need a function that checks if the int has reached zero and resets it if so. -.. code:: ipython2 +.. code:: python define('PE1.1.check == dup [pop 14811] [] branch') -.. code:: ipython2 +.. code:: python J('14811 [PE1.1.check PE1.1] G') @@ -294,7 +294,7 @@ if so. [14811 swap [PE1.1.check PE1.1] direco] -.. code:: ipython2 +.. code:: python J('[14811 swap [PE1.1.check PE1.1] direco] 21 [x] times') @@ -316,7 +316,7 @@ In the PE1 problem we are asked to sum all the multiples of three and five less than 1000. It’s worked out that we need to use all seven numbers sixty-six times and then four more. -.. code:: ipython2 +.. code:: python J('7 66 * 4 +') @@ -328,7 +328,7 @@ numbers sixty-six times and then four more. If we drive our generator 466 times and sum the stack we get 999. -.. code:: ipython2 +.. code:: python J('[14811 swap [PE1.1.check PE1.1] direco] 466 [x] times') @@ -338,7 +338,7 @@ If we drive our generator 466 times and sum the stack we get 999. 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 1 2 3 3 2 1 3 [57 swap [PE1.1.check PE1.1] direco] -.. code:: ipython2 +.. code:: python J('[14811 swap [PE1.1.check PE1.1] direco] 466 [x] times pop enstacken sum') @@ -351,13 +351,13 @@ If we drive our generator 466 times and sum the stack we get 999. Project Euler Problem One ------------------------- -.. code:: ipython2 +.. code:: python define('PE1.2 == + dup [+] dip') Now we can add ``PE1.2`` to the quoted program given to ``G``. -.. code:: ipython2 +.. code:: python J('0 0 0 [PE1.1.check PE1.1] G 466 [x [PE1.2] dip] times popop') @@ -445,15 +445,15 @@ Putting it all together: F == + [popdd over] cons infra uncons fib_gen == [1 1 F] -.. code:: ipython2 +.. code:: python define('fib == + [popdd over] cons infra uncons') -.. code:: ipython2 +.. code:: python define('fib_gen == [1 1 fib]') -.. code:: ipython2 +.. code:: python J('fib_gen 10 [x] times') @@ -473,14 +473,14 @@ Now that we have a generator for the Fibonacci sequence, we need a function that adds a term in the sequence to a sum if it is even, and ``pop``\ s it otherwise. -.. code:: ipython2 +.. code:: python define('PE2.1 == dup 2 % [+] [pop] branch') And a predicate function that detects when the terms in the series “exceed four million”. -.. code:: ipython2 +.. code:: python define('>4M == 4000000 >') @@ -488,11 +488,11 @@ Now it’s straightforward to define ``PE2`` as a recursive function that generates terms in the Fibonacci sequence until they exceed four million and sums the even ones. -.. code:: ipython2 +.. code:: python define('PE2 == 0 fib_gen x [pop >4M] [popop] [[PE2.1] dip x] primrec') -.. code:: ipython2 +.. code:: python J('PE2') @@ -535,7 +535,7 @@ So the Fibonacci sequence considered in terms of just parity would be: Every third term is even. -.. code:: ipython2 +.. code:: python J('[1 0 fib] x x x') # To start the sequence with 1 1 2 3 instead of 1 2 3. @@ -547,7 +547,7 @@ Every third term is even. Drive the generator three times and ``popop`` the two odd terms. -.. code:: ipython2 +.. code:: python J('[1 0 fib] x x x [popop] dipd') @@ -557,11 +557,11 @@ Drive the generator three times and ``popop`` the two odd terms. 2 [3 2 fib] -.. code:: ipython2 +.. code:: python define('PE2.2 == x x x [popop] dipd') -.. code:: ipython2 +.. code:: python J('[1 0 fib] 10 [PE2.2] times') @@ -574,7 +574,7 @@ Drive the generator three times and ``popop`` the two odd terms. Replace ``x`` with our new driver function ``PE2.2`` and start our ``fib`` generator at ``1 0``. -.. code:: ipython2 +.. code:: python J('0 [1 0 fib] PE2.2 [pop >4M] [popop] [[PE2.1] dip PE2.2] primrec') @@ -593,11 +593,11 @@ modifications to the default ``x``? An Interesting Variation ------------------------ -.. code:: ipython2 +.. code:: python define('codireco == cons dip rest cons') -.. code:: ipython2 +.. code:: python V('[0 [dup ++] codireco] x') @@ -620,11 +620,11 @@ An Interesting Variation 0 [1 [dup ++] codireco] . -.. code:: ipython2 +.. code:: python define('G == [codireco] cons cons') -.. code:: ipython2 +.. code:: python J('230 [dup ++] G 5 [x] times pop') diff --git a/docs/sphinx_docs/notebooks/Intro.rst b/docs/sphinx_docs/notebooks/Intro.rst index b832048..73704cf 100644 --- a/docs/sphinx_docs/notebooks/Intro.rst +++ b/docs/sphinx_docs/notebooks/Intro.rst @@ -150,7 +150,7 @@ TBD (look in the :module: joy.parser module.) Examples ~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python joy.parser.text_to_expression('1 2 3 4 5') # A simple sequence. @@ -160,7 +160,7 @@ Examples (1, (2, (3, (4, (5, ()))))) -.. code:: ipython2 +.. code:: python joy.parser.text_to_expression('[1 2 3] 4 5') # Three items, the first is a list with three items @@ -170,7 +170,7 @@ Examples ((1, (2, (3, ()))), (4, (5, ()))) -.. code:: ipython2 +.. code:: python joy.parser.text_to_expression('1 23 ["four" [-5.0] cons] 8888') # A mixed bag. cons is # a Symbol, no lookup at @@ -184,7 +184,7 @@ Examples -.. code:: ipython2 +.. code:: python joy.parser.text_to_expression('[][][][][]') # Five empty lists. @@ -197,7 +197,7 @@ Examples -.. code:: ipython2 +.. code:: python joy.parser.text_to_expression('[[[[[]]]]]') # Five nested lists. @@ -221,7 +221,7 @@ provide control-flow and higher-order operations. Many of the functions are defined in Python, like ``dip``: -.. code:: ipython2 +.. code:: python print inspect.getsource(joy.library.dip) @@ -239,7 +239,7 @@ When the interpreter executes a definition function that function just pushes its body expression onto the pending expression (the continuation) and returns control to the interpreter. -.. code:: ipython2 +.. code:: python print joy.library.definitions diff --git a/docs/sphinx_docs/notebooks/Ordered_Binary_Trees.rst b/docs/sphinx_docs/notebooks/Ordered_Binary_Trees.rst index 569d665..a625ac3 100644 --- a/docs/sphinx_docs/notebooks/Ordered_Binary_Trees.rst +++ b/docs/sphinx_docs/notebooks/Ordered_Binary_Trees.rst @@ -36,7 +36,7 @@ implementation under the hood. (Where does the “type” come from? It has a contingent existence predicated on the disciplined use of these functions on otherwise undistinguished Joy datastructures.) -.. code:: ipython2 +.. code:: python from notebook_preamble import D, J, V, define, DefinitionWrapper @@ -87,11 +87,11 @@ Definition: Tree-new == swap [[] []] cons cons -.. code:: ipython2 +.. code:: python define('Tree-new == swap [[] []] cons cons') -.. code:: ipython2 +.. code:: python J('"v" "k" Tree-new') @@ -163,11 +163,11 @@ comparison operator: P < == pop roll> pop first < P == pop roll> pop first -.. code:: ipython2 +.. code:: python define('P == pop roll> pop first') -.. code:: ipython2 +.. code:: python J('["old_key" 23 [] []] 17 "new_key" ["..."] P') @@ -242,11 +242,11 @@ And so ``T`` is just: T == cons cons [dipdd] cons infra -.. code:: ipython2 +.. code:: python define('T == cons cons [dipdd] cons infra') -.. code:: ipython2 +.. code:: python J('["old_k" "old_value" "left" "right"] "new_value" "new_key" ["Tree-add"] T') @@ -266,7 +266,7 @@ This is very very similar to the above: [key_n value_n left right] value key [Tree-add] E [key_n value_n left right] value key [Tree-add] [P <] [Te] [Ee] ifte -.. code:: ipython2 +.. code:: python define('E == [P <] [Te] [Ee] ifte') @@ -278,11 +278,11 @@ instead of the right, so the only difference is that it must use Te == cons cons [dipd] cons infra -.. code:: ipython2 +.. code:: python define('Te == cons cons [dipd] cons infra') -.. code:: ipython2 +.. code:: python J('["old_k" "old_value" "left" "right"] "new_value" "new_key" ["Tree-add"] Te') @@ -320,11 +320,11 @@ Example: key new_value [ left right] cons cons [key new_value left right] -.. code:: ipython2 +.. code:: python define('Ee == pop swap roll< rest rest cons cons') -.. code:: ipython2 +.. code:: python J('["k" "old_value" "left" "right"] "new_value" "k" ["Tree-add"] Ee') @@ -355,14 +355,14 @@ Putting it all together: Tree-add == [popop not] [[pop] dipd Tree-new] [] [R] genrec -.. code:: ipython2 +.. code:: python define('Tree-add == [popop not] [[pop] dipd Tree-new] [] [[P >] [T] [E] ifte] genrec') Examples ~~~~~~~~ -.. code:: ipython2 +.. code:: python J('[] 23 "b" Tree-add') # Initial @@ -372,7 +372,7 @@ Examples ['b' 23 [] []] -.. code:: ipython2 +.. code:: python J('["b" 23 [] []] 88 "c" Tree-add') # Greater than @@ -382,7 +382,7 @@ Examples ['b' 23 [] ['c' 88 [] []]] -.. code:: ipython2 +.. code:: python J('["b" 23 [] []] 88 "a" Tree-add') # Less than @@ -392,7 +392,7 @@ Examples ['b' 23 ['a' 88 [] []] []] -.. code:: ipython2 +.. code:: python J('["b" 23 [] []] 88 "b" Tree-add') # Equal to @@ -402,7 +402,7 @@ Examples ['b' 88 [] []] -.. code:: ipython2 +.. code:: python J('[] 23 "b" Tree-add 88 "a" Tree-add 44 "c" Tree-add') # Series. @@ -412,7 +412,7 @@ Examples ['b' 23 ['a' 88 [] []] ['c' 44 [] []]] -.. code:: ipython2 +.. code:: python J('[] [[23 "b"] [88 "a"] [44 "c"]] [i Tree-add] step') @@ -444,7 +444,7 @@ values: ------------------------- a < b L -.. code:: ipython2 +.. code:: python J("1 0 ['G'] ['E'] ['L'] cmp") @@ -454,7 +454,7 @@ values: 'G' -.. code:: ipython2 +.. code:: python J("1 1 ['G'] ['E'] ['L'] cmp") @@ -464,7 +464,7 @@ values: 'E' -.. code:: ipython2 +.. code:: python J("0 1 ['G'] ['E'] ['L'] cmp") @@ -514,7 +514,7 @@ Or just: P == over [popop popop first] nullary -.. code:: ipython2 +.. code:: python define('P == over [popop popop first] nullary') @@ -541,11 +541,11 @@ to understand: Tree-add == [popop not] [[pop] dipd Tree-new] [] [P [T] [Ee] [Te] cmp] genrec -.. code:: ipython2 +.. code:: python define('Tree-add == [popop not] [[pop] dipd Tree-new] [] [P [T] [Ee] [Te] cmp] genrec') -.. code:: ipython2 +.. code:: python J('[] 23 "b" Tree-add 88 "a" Tree-add 44 "c" Tree-add') # Still works. @@ -685,14 +685,14 @@ Working backward: Tree-iter == [not] [pop] roll< [dupdip rest rest] cons [step] genrec -.. code:: ipython2 +.. code:: python define('Tree-iter == [not] [pop] roll< [dupdip rest rest] cons [step] genrec') Examples ~~~~~~~~ -.. code:: ipython2 +.. code:: python J('[] [foo] Tree-iter') # It doesn't matter what F is as it won't be used. @@ -702,7 +702,7 @@ Examples -.. code:: ipython2 +.. code:: python J("['b' 23 ['a' 88 [] []] ['c' 44 [] []]] [first] Tree-iter") @@ -712,7 +712,7 @@ Examples 'b' 'a' 'c' -.. code:: ipython2 +.. code:: python J("['b' 23 ['a' 88 [] []] ['c' 44 [] []]] [second] Tree-iter") @@ -731,7 +731,7 @@ to it will only occur once within it, and we can query it in `:math:`O(\log_2 N)` `__ time. -.. code:: ipython2 +.. code:: python J('[] [3 9 5 2 8 6 7 8 4] [0 swap Tree-add] step') @@ -741,11 +741,11 @@ time. [3 0 [2 0 [] []] [9 0 [5 0 [4 0 [] []] [8 0 [6 0 [] [7 0 [] []]] []]] []]] -.. code:: ipython2 +.. code:: python define('to_set == [] swap [0 swap Tree-add] step') -.. code:: ipython2 +.. code:: python J('[3 9 5 2 8 6 7 8 4] to_set') @@ -758,11 +758,11 @@ time. And with that we can write a little program ``unique`` to remove duplicate items from a list. -.. code:: ipython2 +.. code:: python define('unique == [to_set [first] Tree-iter] cons run') -.. code:: ipython2 +.. code:: python J('[3 9 3 5 2 9 8 8 8 6 2 7 8 4 3] unique') # Filter duplicate items. @@ -872,7 +872,7 @@ Let’s do a little semantic factoring: Now we can sort sequences. -.. code:: ipython2 +.. code:: python #define('Tree-iter-order == [not] [pop] [dup third] [[cons dip] dupdip [[first] dupdip] dip [rest rest rest first] dip i] genrec') @@ -892,7 +892,7 @@ Now we can sort sequences. -.. code:: ipython2 +.. code:: python J('[3 9 5 2 8 6 7 8 4] to_set Tree-iter-order') @@ -1070,7 +1070,7 @@ So: Tree-get == [pop not] swap [] [P [T>] [E] [T<] cmp] genrec -.. code:: ipython2 +.. code:: python # I don't want to deal with name conflicts with the above so I'm inlining everything here. # The original Joy system has "hide" which is a meta-command which allows you to use named @@ -1088,7 +1088,7 @@ So: ] genrec ''') -.. code:: ipython2 +.. code:: python J('["gary" 23 [] []] "mike" [popd " not in tree" +] Tree-get') @@ -1098,7 +1098,7 @@ So: 'mike not in tree' -.. code:: ipython2 +.. code:: python J('["gary" 23 [] []] "gary" [popop "err"] Tree-get') @@ -1108,7 +1108,7 @@ So: 23 -.. code:: ipython2 +.. code:: python J(''' @@ -1124,7 +1124,7 @@ So: 2 -.. code:: ipython2 +.. code:: python J(''' @@ -1500,7 +1500,7 @@ Refactoring By the standards of the code I’ve written so far, this is a *huge* Joy program. -.. code:: ipython2 +.. code:: python DefinitionWrapper.add_definitions(''' first_two == uncons uncons pop @@ -1519,7 +1519,7 @@ program. Tree-Delete == [pop not] [pop] [R0] [R1] genrec ''', D) -.. code:: ipython2 +.. code:: python J("['a' 23 [] ['b' 88 [] ['c' 44 [] []]]] 'c' Tree-Delete ") @@ -1529,7 +1529,7 @@ program. ['a' 23 [] ['b' 88 [] []]] -.. code:: ipython2 +.. code:: python J("['a' 23 [] ['b' 88 [] ['c' 44 [] []]]] 'b' Tree-Delete ") @@ -1539,7 +1539,7 @@ program. ['a' 23 [] ['c' 44 [] []]] -.. code:: ipython2 +.. code:: python J("['a' 23 [] ['b' 88 [] ['c' 44 [] []]]] 'a' Tree-Delete ") @@ -1549,7 +1549,7 @@ program. ['b' 88 [] ['c' 44 [] []]] -.. code:: ipython2 +.. code:: python J("['a' 23 [] ['b' 88 [] ['c' 44 [] []]]] 'der' Tree-Delete ") @@ -1559,7 +1559,7 @@ program. ['a' 23 [] ['b' 88 [] ['c' 44 [] []]]] -.. code:: ipython2 +.. code:: python J('[] [4 2 3 1 6 7 5 ] [0 swap Tree-add] step') @@ -1569,7 +1569,7 @@ program. [4 0 [2 0 [1 0 [] []] [3 0 [] []]] [6 0 [5 0 [] []] [7 0 [] []]]] -.. code:: ipython2 +.. code:: python J("[4 0 [2 0 [1 0 [] []] [3 0 [] []]] [6 0 [5 0 [] []] [7 0 [] []]]] 3 Tree-Delete ") @@ -1579,7 +1579,7 @@ program. [4 0 [2 0 [1 0 [] []] []] [6 0 [5 0 [] []] [7 0 [] []]]] -.. code:: ipython2 +.. code:: python J("[4 0 [2 0 [1 0 [] []] [3 0 [] []]] [6 0 [5 0 [] []] [7 0 [] []]]] 4 Tree-Delete ") diff --git a/docs/sphinx_docs/notebooks/Quadratic.rst b/docs/sphinx_docs/notebooks/Quadratic.rst index 3262e84..5afb8e2 100644 --- a/docs/sphinx_docs/notebooks/Quadratic.rst +++ b/docs/sphinx_docs/notebooks/Quadratic.rst @@ -1,4 +1,4 @@ -.. code:: ipython2 +.. code:: python from notebook_preamble import J, V, define @@ -81,13 +81,13 @@ the variables: The three arguments are to the left, so we can “chop off” everything to the right and say it’s the definition of the ``quadratic`` function: -.. code:: ipython2 +.. code:: python define('quadratic == over [[[neg] dupdip sqr 4] dipd * * - sqrt pm] dip 2 * [/] cons app2') Let’s try it out: -.. code:: ipython2 +.. code:: python J('3 1 1 quadratic') @@ -102,7 +102,7 @@ lines are the ``dip`` and ``dipd`` combinators building the main program by incorporating the values on the stack. Then that program runs and you get the results. This is pretty typical of Joy code. -.. code:: ipython2 +.. code:: python V('-5 1 4 quadratic') diff --git a/docs/sphinx_docs/notebooks/Recursion_Combinators.rst b/docs/sphinx_docs/notebooks/Recursion_Combinators.rst index 9159882..65c4480 100644 --- a/docs/sphinx_docs/notebooks/Recursion_Combinators.rst +++ b/docs/sphinx_docs/notebooks/Recursion_Combinators.rst @@ -1,4 +1,4 @@ -.. code:: ipython2 +.. code:: python from notebook_preamble import D, DefinitionWrapper, J, V, define @@ -80,7 +80,7 @@ is a recursive function ``H :: A -> C`` that converts a value of type It may be helpful to see this function implemented in imperative Python code. -.. code:: ipython2 +.. code:: python def hylomorphism(c, F, P, G): '''Return a hylomorphism function H.''' @@ -185,7 +185,7 @@ the left so we have a definition for ``hylomorphism``: hylomorphism == [unit [pop] swoncat] dipd [dip] swoncat genrec -.. code:: ipython2 +.. code:: python define('hylomorphism == [unit [pop] swoncat] dipd [dip] swoncat genrec') @@ -203,13 +203,13 @@ To sum a range of integers from 0 to *n* - 1: - ``[G]`` is ``[-- dup]`` - ``[F]`` is ``[+]`` -.. code:: ipython2 +.. code:: python define('triangular_number == [1 <=] 0 [-- dup] [+] hylomorphism') Let’s try it: -.. code:: ipython2 +.. code:: python J('5 triangular_number') @@ -219,7 +219,7 @@ Let’s try it: 10 -.. code:: ipython2 +.. code:: python J('[0 1 2 3 4 5 6] [triangular_number] map') @@ -405,11 +405,11 @@ Each of the above variations can be used to make four slightly different H1 == [P] [pop c] [G] [dip F] genrec == [0 <=] [pop []] [-- dup] [dip swons] genrec -.. code:: ipython2 +.. code:: python define('range == [0 <=] [] [-- dup] [swons] hylomorphism') -.. code:: ipython2 +.. code:: python J('5 range') @@ -427,11 +427,11 @@ Each of the above variations can be used to make four slightly different H2 == c swap [P] [pop] [G [F] dip] primrec == [] swap [0 <=] [pop] [-- dup [swons] dip] primrec -.. code:: ipython2 +.. code:: python define('range_reverse == [] swap [0 <=] [pop] [-- dup [swons] dip] primrec') -.. code:: ipython2 +.. code:: python J('5 range_reverse') @@ -449,11 +449,11 @@ Each of the above variations can be used to make four slightly different H3 == [P] [pop c] [[G] dupdip] [dip F] genrec == [0 <=] [pop []] [[--] dupdip] [dip swons] genrec -.. code:: ipython2 +.. code:: python define('ranger == [0 <=] [pop []] [[--] dupdip] [dip swons] genrec') -.. code:: ipython2 +.. code:: python J('5 ranger') @@ -471,11 +471,11 @@ Each of the above variations can be used to make four slightly different H4 == c swap [P] [pop] [[F] dupdip G ] primrec == [] swap [0 <=] [pop] [[swons] dupdip --] primrec -.. code:: ipython2 +.. code:: python define('ranger_reverse == [] swap [0 <=] [pop] [[swons] dupdip --] primrec') -.. code:: ipython2 +.. code:: python J('5 ranger_reverse') @@ -501,7 +501,7 @@ and makes some new value. C == [not] c [uncons swap] [F] hylomorphism -.. code:: ipython2 +.. code:: python define('swuncons == uncons swap') # Awkward name. @@ -511,11 +511,11 @@ An example of a catamorphism is the sum function. sum == [not] 0 [swuncons] [+] hylomorphism -.. code:: ipython2 +.. code:: python define('sum == [not] 0 [swuncons] [+] hylomorphism') -.. code:: ipython2 +.. code:: python J('[5 4 3 2 1] sum') @@ -531,7 +531,7 @@ The ``step`` combinator The ``step`` combinator will usually be better to use than ``catamorphism``. -.. code:: ipython2 +.. code:: python J('[step] help') @@ -560,11 +560,11 @@ The ``step`` combinator will usually be better to use than -.. code:: ipython2 +.. code:: python define('sum == 0 swap [+] step') -.. code:: ipython2 +.. code:: python J('[5 4 3 2 1] sum') @@ -592,11 +592,11 @@ With: G == -- P == 1 <= -.. code:: ipython2 +.. code:: python define('factorial == 1 swap [1 <=] [pop] [[*] dupdip --] primrec') -.. code:: ipython2 +.. code:: python J('5 factorial') @@ -635,11 +635,11 @@ We would use: G == rest dup P == not -.. code:: ipython2 +.. code:: python define('tails == [] swap [not] [pop] [rest dup [swons] dip] primrec') -.. code:: ipython2 +.. code:: python J('[1 2 3] tails') diff --git a/docs/sphinx_docs/notebooks/Replacing.rst b/docs/sphinx_docs/notebooks/Replacing.rst index 0f90445..02ecb3b 100644 --- a/docs/sphinx_docs/notebooks/Replacing.rst +++ b/docs/sphinx_docs/notebooks/Replacing.rst @@ -9,14 +9,14 @@ dictionary. However, there’s no function that does that. Adding a new function to the dictionary is a meta-interpreter action, you have to do it in Python, not Joy. -.. code:: ipython2 +.. code:: python from notebook_preamble import D, J, V A long trace ------------ -.. code:: ipython2 +.. code:: python V('[23 18] average') @@ -81,7 +81,7 @@ An efficient ``sum`` function is already in the library. But for ``size`` we can use a “compiled” version hand-written in Python to speed up evaluation and make the trace more readable. -.. code:: ipython2 +.. code:: python from joy.library import SimpleFunctionWrapper from joy.utils.stack import iter_stack @@ -99,7 +99,7 @@ up evaluation and make the trace more readable. Now we replace the old version in the dictionary with the new version, and re-evaluate the expression. -.. code:: ipython2 +.. code:: python D['size'] = size @@ -108,7 +108,7 @@ A shorter trace You can see that ``size`` now executes in a single step. -.. code:: ipython2 +.. code:: python V('[23 18] average') diff --git a/docs/sphinx_docs/notebooks/Treestep.rst b/docs/sphinx_docs/notebooks/Treestep.rst index 6b9081f..7f273d8 100644 --- a/docs/sphinx_docs/notebooks/Treestep.rst +++ b/docs/sphinx_docs/notebooks/Treestep.rst @@ -148,11 +148,11 @@ Working backwards: Define ``treestep`` ------------------- -.. code:: ipython2 +.. code:: python from notebook_preamble import D, J, V, define, DefinitionWrapper -.. code:: ipython2 +.. code:: python DefinitionWrapper.add_definitions(''' @@ -173,7 +173,7 @@ all nodes in a tree with this function: sumtree == [pop 0] [] [sum +] treestep -.. code:: ipython2 +.. code:: python define('sumtree == [pop 0] [] [sum +] treestep') @@ -185,7 +185,7 @@ Running this function on an empty tree value gives zero: ------------------------------------ 0 -.. code:: ipython2 +.. code:: python J('[] sumtree') # Empty tree. @@ -205,7 +205,7 @@ Running it on a non-empty node: n m + n+m -.. code:: ipython2 +.. code:: python J('[23] sumtree') # No child trees. @@ -215,7 +215,7 @@ Running it on a non-empty node: 23 -.. code:: ipython2 +.. code:: python J('[23 []] sumtree') # Child tree, empty. @@ -225,7 +225,7 @@ Running it on a non-empty node: 23 -.. code:: ipython2 +.. code:: python J('[23 [2 [4]] [3]] sumtree') # Non-empty child trees. @@ -235,7 +235,7 @@ Running it on a non-empty node: 32 -.. code:: ipython2 +.. code:: python J('[23 [2 [8] [9]] [3] [4 []]] sumtree') # Etc... @@ -245,7 +245,7 @@ Running it on a non-empty node: 49 -.. code:: ipython2 +.. code:: python J('[23 [2 [8] [9]] [3] [4 []]] [pop 0] [] [cons sum] treestep') # Alternate "spelling". @@ -255,7 +255,7 @@ Running it on a non-empty node: 49 -.. code:: ipython2 +.. code:: python J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 23] [cons] treestep') # Replace each node. @@ -265,7 +265,7 @@ Running it on a non-empty node: [23 [23 [23] [23]] [23] [23 []]] -.. code:: ipython2 +.. code:: python J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 1] [cons] treestep') @@ -275,7 +275,7 @@ Running it on a non-empty node: [1 [1 [1] [1]] [1] [1 []]] -.. code:: ipython2 +.. code:: python J('[23 [2 [8] [9]] [3] [4 []]] [] [pop 1] [cons] treestep sumtree') @@ -285,7 +285,7 @@ Running it on a non-empty node: 6 -.. code:: ipython2 +.. code:: python J('[23 [2 [8] [9]] [3] [4 []]] [pop 0] [pop 1] [sum +] treestep') # Combine replace and sum into one function. @@ -295,7 +295,7 @@ Running it on a non-empty node: 6 -.. code:: ipython2 +.. code:: python J('[4 [3 [] [7]]] [pop 0] [pop 1] [sum +] treestep') # Combine replace and sum into one function. @@ -339,7 +339,7 @@ Traversal This doesn’t quite work: -.. code:: ipython2 +.. code:: python J('[[3 0] [[2 0] [][]] [[9 0] [[5 0] [[4 0] [][]] [[8 0] [[6 0] [] [[7 0] [][]]][]]][]]] ["B"] [first] [i] treestep') @@ -369,7 +369,7 @@ So: [] [first] [flatten cons] treestep -.. code:: ipython2 +.. code:: python J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [first] [flatten cons] treestep') @@ -401,7 +401,7 @@ So: [] [i roll< swons concat] [first] treestep -.. code:: ipython2 +.. code:: python J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [uncons pop] [i roll< swons concat] treestep') @@ -429,7 +429,7 @@ Plugging in our BTree structure: [key value] N [left right] [K] C -.. code:: ipython2 +.. code:: python J('[["key" "value"] ["left"] ["right"] ] ["B"] ["N"] ["C"] treegrind') @@ -444,7 +444,7 @@ Plugging in our BTree structure: Iteration through the nodes -.. code:: ipython2 +.. code:: python J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [pop] ["N"] [step] treegrind') @@ -456,7 +456,7 @@ Iteration through the nodes Sum the nodes’ keys. -.. code:: ipython2 +.. code:: python J('0 [[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [pop] [first +] [step] treegrind') @@ -468,7 +468,7 @@ Sum the nodes’ keys. Rebuild the tree using ``map`` (imitating ``treestep``.) -.. code:: ipython2 +.. code:: python J('[[3 0] [[2 0] [] []] [[9 0] [[5 0] [[4 0] [] []] [[8 0] [[6 0] [] [[7 0] [] []]] []]] []]] [] [[100 +] infra] [map cons] treegrind') @@ -574,7 +574,7 @@ Putting it together To me, that seems simpler than the ``genrec`` version. -.. code:: ipython2 +.. code:: python DefinitionWrapper.add_definitions(''' @@ -587,7 +587,7 @@ To me, that seems simpler than the ``genrec`` version. ''', D) -.. code:: ipython2 +.. code:: python J('''\ @@ -603,7 +603,7 @@ To me, that seems simpler than the ``genrec`` version. 15 -.. code:: ipython2 +.. code:: python J('''\ diff --git a/docs/sphinx_docs/notebooks/TypeChecking.rst b/docs/sphinx_docs/notebooks/TypeChecking.rst index cd85c67..4e70a1a 100644 --- a/docs/sphinx_docs/notebooks/TypeChecking.rst +++ b/docs/sphinx_docs/notebooks/TypeChecking.rst @@ -1,7 +1,7 @@ Type Checking ============= -.. code:: ipython2 +.. code:: python import logging, sys @@ -11,7 +11,7 @@ Type Checking level=logging.INFO, ) -.. code:: ipython2 +.. code:: python from joy.utils.types import ( doc_from_stack_effect, @@ -22,7 +22,7 @@ Type Checking JoyTypeError, ) -.. code:: ipython2 +.. code:: python D = FUNCTIONS.copy() del D['product'] @@ -31,7 +31,7 @@ Type Checking An Example ---------- -.. code:: ipython2 +.. code:: python fi, fo = infer(pop, swap, rolldown, rrest, ccons)[0] @@ -46,7 +46,7 @@ An Example 40 ([a4 a5 ...1] a3 a2 a1 -- [a2 a3 ...1]) ∘ -.. code:: ipython2 +.. code:: python print doc_from_stack_effect(fi, fo) @@ -56,13 +56,13 @@ An Example ([a4 a5 ...1] a3 a2 a1 -- [a2 a3 ...1]) -.. code:: ipython2 +.. code:: python from joy.parser import text_to_expression from joy.utils.stack import stack_to_string -.. code:: ipython2 +.. code:: python e = text_to_expression('0 1 2 [3 4]') # reverse order print stack_to_string(e) @@ -73,7 +73,7 @@ An Example [3 4] 2 1 0 -.. code:: ipython2 +.. code:: python u = unify(e, fi)[0] u @@ -87,7 +87,7 @@ An Example -.. code:: ipython2 +.. code:: python g = reify(u, (fi, fo)) print doc_from_stack_effect(*g) @@ -101,11 +101,11 @@ An Example Unification Works “in Reverse” ------------------------------ -.. code:: ipython2 +.. code:: python e = text_to_expression('[2 3]') -.. code:: ipython2 +.. code:: python u = unify(e, fo)[0] # output side, not input side u @@ -119,7 +119,7 @@ Unification Works “in Reverse” -.. code:: ipython2 +.. code:: python g = reify(u, (fi, fo)) print doc_from_stack_effect(*g) @@ -133,7 +133,7 @@ Unification Works “in Reverse” Failing a Check --------------- -.. code:: ipython2 +.. code:: python fi, fo = infer(dup, mul)[0] @@ -146,7 +146,7 @@ Failing a Check 31 (i1 -- i2) ∘ -.. code:: ipython2 +.. code:: python e = text_to_expression('"two"') print stack_to_string(e) @@ -157,7 +157,7 @@ Failing a Check 'two' -.. code:: ipython2 +.. code:: python try: unify(e, fi) diff --git a/docs/sphinx_docs/notebooks/Types.rst b/docs/sphinx_docs/notebooks/Types.rst index 4c91600..8ca737d 100644 --- a/docs/sphinx_docs/notebooks/Types.rst +++ b/docs/sphinx_docs/notebooks/Types.rst @@ -184,7 +184,7 @@ Compiling ``pop∘swap∘roll<`` The simplest way to “compile” this function would be something like: -.. code:: ipython2 +.. code:: python def poswrd(s, e, d): return rolldown(*swap(*pop(s, e, d))) @@ -200,7 +200,7 @@ Looking ahead for a moment, from the stack effect comment: We should be able to directly write out a Python function like: -.. code:: ipython2 +.. code:: python def poswrd(stack): (_, (a, (b, (c, stack)))) = stack @@ -393,7 +393,7 @@ And there you have it, the stack effect for From this stack effect comment it should be possible to construct the following Python code: -.. code:: ipython2 +.. code:: python def F(stack): (_, (d, (c, ((a, (b, S0)), stack)))) = stack @@ -408,7 +408,7 @@ Representing Stack Effect Comments in Python I’m going to use pairs of tuples of type descriptors, which will be integers or tuples of type descriptors: -.. code:: ipython2 +.. code:: python roll_dn = (1, 2, 3), (2, 3, 1) @@ -419,7 +419,7 @@ integers or tuples of type descriptors: ``compose()`` ~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def compose(f, g): @@ -465,7 +465,7 @@ integers or tuples of type descriptors: ``unify()`` ~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def unify(u, v, s=None): if s is None: @@ -483,7 +483,7 @@ integers or tuples of type descriptors: ``update()`` ~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def update(s, term): if not isinstance(term, tuple): @@ -493,7 +493,7 @@ integers or tuples of type descriptors: ``relabel()`` ~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def relabel(left, right): return left, _1000(right) @@ -517,7 +517,7 @@ integers or tuples of type descriptors: ``delabel()`` ~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python def delabel(f): s = {u: i for i, u in enumerate(sorted(_unique(f)))} @@ -551,7 +551,7 @@ At last we put it all together in a function ``C()`` that accepts two stack effect comments and returns their composition (or raises and exception if they can’t be composed due to type conflicts.) -.. code:: ipython2 +.. code:: python def C(f, g): f, g = relabel(f, g) @@ -560,7 +560,7 @@ exception if they can’t be composed due to type conflicts.) Let’s try it out. -.. code:: ipython2 +.. code:: python C(pop, swap) @@ -573,7 +573,7 @@ Let’s try it out. -.. code:: ipython2 +.. code:: python C(C(pop, swap), roll_dn) @@ -586,7 +586,7 @@ Let’s try it out. -.. code:: ipython2 +.. code:: python C(swap, roll_dn) @@ -599,7 +599,7 @@ Let’s try it out. -.. code:: ipython2 +.. code:: python C(pop, C(swap, roll_dn)) @@ -612,7 +612,7 @@ Let’s try it out. -.. code:: ipython2 +.. code:: python poswrd = reduce(C, (pop, swap, roll_dn)) poswrd @@ -633,13 +633,13 @@ Here’s that trick to represent functions like ``rest`` and ``cons`` that manipulate stacks. We use a cons-list of tuples and give the tails their own numbers. Then everything above already works. -.. code:: ipython2 +.. code:: python rest = ((1, 2),), (2,) cons = (1, 2), ((1, 2),) -.. code:: ipython2 +.. code:: python C(poswrd, rest) @@ -671,7 +671,7 @@ The translation table, if you will, would be: 0: 0, } -.. code:: ipython2 +.. code:: python F = reduce(C, (pop, swap, roll_dn, rest, rest, cons, cons)) @@ -699,11 +699,11 @@ Dealing with ``cons`` and ``uncons`` However, if we try to compose e.g. ``cons`` and ``uncons`` it won’t work: -.. code:: ipython2 +.. code:: python uncons = ((1, 2),), (1, 2) -.. code:: ipython2 +.. code:: python try: C(cons, uncons) @@ -723,7 +723,7 @@ The problem is that the ``unify()`` function as written doesn’t handle the case when both terms are tuples. We just have to add a clause to deal with this recursively: -.. code:: ipython2 +.. code:: python def unify(u, v, s=None): if s is None: @@ -753,7 +753,7 @@ deal with this recursively: return s -.. code:: ipython2 +.. code:: python C(cons, uncons) @@ -771,7 +771,7 @@ Part III: Compiling Yin Functions Now consider the Python function we would like to derive: -.. code:: ipython2 +.. code:: python def F_python(stack): (_, (d, (c, ((a, (b, S0)), stack)))) = stack @@ -779,7 +779,7 @@ Now consider the Python function we would like to derive: And compare it to the input stack effect comment tuple we just computed: -.. code:: ipython2 +.. code:: python F[0] @@ -816,7 +816,7 @@ Eh? And the return tuple -.. code:: ipython2 +.. code:: python F[1] @@ -848,7 +848,7 @@ Python Identifiers We want to substitute Python identifiers for the integers. I’m going to repurpose ``joy.parser.Symbol`` class for this: -.. code:: ipython2 +.. code:: python from collections import defaultdict from joy.parser import Symbol @@ -874,7 +874,7 @@ effect comment tuples to reasonable text format. There are some details in how this code works that related to stuff later in the notebook, so you should skip it for now and read it later if you’re interested. -.. code:: ipython2 +.. code:: python def doc_from_stack_effect(inputs, outputs): return '(%s--%s)' % ( @@ -914,7 +914,7 @@ Now we can write a compiler function to emit Python source code. (The underscore suffix distiguishes it from the built-in ``compile()`` function.) -.. code:: ipython2 +.. code:: python def compile_(name, f, doc=None): if doc is None: @@ -932,7 +932,7 @@ function.) Here it is in action: -.. code:: ipython2 +.. code:: python source = compile_('F', F) @@ -949,7 +949,7 @@ Here it is in action: Compare: -.. code:: ipython2 +.. code:: python def F_python(stack): (_, (d, (c, ((a, (b, S0)), stack)))) = stack @@ -957,7 +957,7 @@ Compare: Next steps: -.. code:: ipython2 +.. code:: python L = {} @@ -976,16 +976,16 @@ Next steps: Let’s try it out: -.. code:: ipython2 +.. code:: python from notebook_preamble import D, J, V from joy.library import SimpleFunctionWrapper -.. code:: ipython2 +.. code:: python D['F'] = SimpleFunctionWrapper(L['F']) -.. code:: ipython2 +.. code:: python J('[4 5 ...] 2 3 1 F') @@ -1012,7 +1012,7 @@ Compiling Library Functions We can use ``compile_()`` to generate many primitives in the library from their stack effect comments: -.. code:: ipython2 +.. code:: python def defs(): @@ -1036,7 +1036,7 @@ from their stack effect comments: return locals() -.. code:: ipython2 +.. code:: python for name, stack_effect_comment in sorted(defs().items()): print @@ -1205,7 +1205,7 @@ Python class hierarchy of Joy types and use the ``issubclass()`` method to establish domain ordering, as well as other handy behaviour that will make it fairly easy to reuse most of the code above. -.. code:: ipython2 +.. code:: python class AnyJoyType(object): @@ -1251,14 +1251,14 @@ make it fairly easy to reuse most of the code above. Mess with it a little: -.. code:: ipython2 +.. code:: python from itertools import permutations “Any” types can be specialized to numbers and stacks, but not vice versa: -.. code:: ipython2 +.. code:: python for a, b in permutations((A[0], N[0], S[0]), 2): print a, '>=', b, '->', a >= b @@ -1278,7 +1278,7 @@ Our crude `Numerical Tower `__ of *numbers* > *floats* > *integers* works as well (but we’re not going to use it yet): -.. code:: ipython2 +.. code:: python for a, b in permutations((A[0], N[0], FloatJoyType(0), IntJoyType(0)), 2): print a, '>=', b, '->', a >= b @@ -1303,13 +1303,13 @@ Tower `__ of *numbers* > Typing ``sqr`` ~~~~~~~~~~~~~~ -.. code:: ipython2 +.. code:: python dup = (A[1],), (A[1], A[1]) mul = (N[1], N[2]), (N[3],) -.. code:: ipython2 +.. code:: python dup @@ -1322,7 +1322,7 @@ Typing ``sqr`` -.. code:: ipython2 +.. code:: python mul @@ -1340,7 +1340,7 @@ Modifying the Inferencer Re-labeling still works fine: -.. code:: ipython2 +.. code:: python foo = relabel(dup, mul) @@ -1361,7 +1361,7 @@ Re-labeling still works fine: The ``delabel()`` function needs an overhaul. It now has to keep track of how many labels of each domain it has “seen”. -.. code:: ipython2 +.. code:: python from collections import Counter @@ -1383,7 +1383,7 @@ of how many labels of each domain it has “seen”. return tuple(delabel(inner, seen, c) for inner in f) -.. code:: ipython2 +.. code:: python delabel(foo) @@ -1399,7 +1399,7 @@ of how many labels of each domain it has “seen”. ``unify()`` version 3 ^^^^^^^^^^^^^^^^^^^^^ -.. code:: ipython2 +.. code:: python def unify(u, v, s=None): if s is None: @@ -1449,7 +1449,7 @@ of how many labels of each domain it has “seen”. Rewrite the stack effect comments: -.. code:: ipython2 +.. code:: python def defs(): @@ -1503,11 +1503,11 @@ Rewrite the stack effect comments: return locals() -.. code:: ipython2 +.. code:: python DEFS = defs() -.. code:: ipython2 +.. code:: python for name, stack_effect_comment in sorted(DEFS.items()): print name, '=', doc_from_stack_effect(*stack_effect_comment) @@ -1543,14 +1543,14 @@ Rewrite the stack effect comments: uncons = ([a1 .1.] -- a1 [.1.]) -.. code:: ipython2 +.. code:: python globals().update(DEFS) Compose ``dup`` and ``mul`` ^^^^^^^^^^^^^^^^^^^^^^^^^^^ -.. code:: ipython2 +.. code:: python C(dup, mul) @@ -1565,7 +1565,7 @@ Compose ``dup`` and ``mul`` Revisit the ``F`` function, works fine. -.. code:: ipython2 +.. code:: python F = reduce(C, (pop, swap, rolldown, rest, rest, cons, cons)) F @@ -1579,7 +1579,7 @@ Revisit the ``F`` function, works fine. -.. code:: ipython2 +.. code:: python print doc_from_stack_effect(*F) @@ -1592,12 +1592,12 @@ Revisit the ``F`` function, works fine. Some otherwise inefficient functions are no longer to be feared. We can also get the effect of combinators in some limited cases. -.. code:: ipython2 +.. code:: python def neato(*funcs): print doc_from_stack_effect(*reduce(C, funcs)) -.. code:: ipython2 +.. code:: python # e.g. [swap] dip neato(rollup, swap, rolldown) @@ -1608,7 +1608,7 @@ also get the effect of combinators in some limited cases. (a1 a2 a3 -- a2 a1 a3) -.. code:: ipython2 +.. code:: python # e.g. [popop] dipd neato(popdd, rolldown, pop) @@ -1619,7 +1619,7 @@ also get the effect of combinators in some limited cases. (a1 a2 a3 a4 -- a3 a4) -.. code:: ipython2 +.. code:: python # Reverse the order of the top three items. neato(rollup, swap) @@ -1636,7 +1636,7 @@ also get the effect of combinators in some limited cases. Because the type labels represent themselves as valid Python identifiers the ``compile_()`` function doesn’t need to generate them anymore: -.. code:: ipython2 +.. code:: python def compile_(name, f, doc=None): inputs, outputs = f @@ -1652,7 +1652,7 @@ the ``compile_()`` function doesn’t need to generate them anymore: %s = stack return %s''' % (name, doc, i, o) -.. code:: ipython2 +.. code:: python print compile_('F', F) @@ -1668,7 +1668,7 @@ the ``compile_()`` function doesn’t need to generate them anymore: But it cannot magically create new functions that involve e.g. math and such. Note that this is *not* a ``sqr`` function implementation: -.. code:: ipython2 +.. code:: python print compile_('sqr', C(dup, mul)) @@ -1696,7 +1696,7 @@ The functions that *can* be compiled are the ones that have only ``AnyJoyType`` and ``StackJoyType`` labels in their stack effect comments. We can write a function to check that: -.. code:: ipython2 +.. code:: python from itertools import imap @@ -1704,7 +1704,7 @@ comments. We can write a function to check that: def compilable(f): return isinstance(f, tuple) and all(imap(compilable, f)) or stacky(f) -.. code:: ipython2 +.. code:: python for name, stack_effect_comment in sorted(defs().items()): if compilable(stack_effect_comment): @@ -1828,7 +1828,7 @@ the “truthiness” of ``StackJoyType`` to false to let e.g. ``joy.utils.stack.concat`` work with our stack effect comment cons-list tuples.) -.. code:: ipython2 +.. code:: python def compose(f, g): (f_in, f_out), (g_in, g_out) = f, g @@ -1840,7 +1840,7 @@ tuples.) I don’t want to rewrite all the defs myself, so I’ll write a little conversion function instead. This is programmer’s laziness. -.. code:: ipython2 +.. code:: python def sequence_to_stack(seq, stack=StackJoyType(23)): for item in seq: stack = item, stack @@ -1854,7 +1854,7 @@ conversion function instead. This is programmer’s laziness. NEW_DEFS['swaack'] = (S[1], S[0]), (S[0], S[1]) globals().update(NEW_DEFS) -.. code:: ipython2 +.. code:: python C(stack, uncons) @@ -1867,7 +1867,7 @@ conversion function instead. This is programmer’s laziness. -.. code:: ipython2 +.. code:: python reduce(C, (stack, uncons, uncons)) @@ -1887,7 +1887,7 @@ The display function should be changed too. Clunky junk, but it will suffice for now. -.. code:: ipython2 +.. code:: python def doc_from_stack_effect(inputs, outputs): switch = [False] # Do we need to display the '...' for the rest of the main stack? @@ -1935,7 +1935,7 @@ Clunky junk, but it will suffice for now. a.append(end) return '[%s]' % ' '.join(a) -.. code:: ipython2 +.. code:: python for name, stack_effect_comment in sorted(NEW_DEFS.items()): print name, '=', doc_from_stack_effect(*stack_effect_comment) @@ -1973,7 +1973,7 @@ Clunky junk, but it will suffice for now. uncons = ([a1 .1.] -- a1 [.1.]) -.. code:: ipython2 +.. code:: python print ; print doc_from_stack_effect(*stack) print ; print doc_from_stack_effect(*C(stack, uncons)) @@ -1993,7 +1993,7 @@ Clunky junk, but it will suffice for now. (... a1 -- ... a1 [a1 ...]) -.. code:: ipython2 +.. code:: python print doc_from_stack_effect(*C(ccons, stack)) @@ -2003,7 +2003,7 @@ Clunky junk, but it will suffice for now. (... a2 a1 [.1.] -- ... [a2 a1 .1.] [[a2 a1 .1.] ...]) -.. code:: ipython2 +.. code:: python Q = C(ccons, stack) @@ -2024,7 +2024,7 @@ Clunky junk, but it will suffice for now. This makes the ``compile_()`` function pretty simple as the stack effect comments are now already in the form needed for the Python code: -.. code:: ipython2 +.. code:: python def compile_(name, f, doc=None): i, o = f @@ -2035,7 +2035,7 @@ comments are now already in the form needed for the Python code: %s = stack return %s''' % (name, doc, i, o) -.. code:: ipython2 +.. code:: python print compile_('Q', Q) @@ -2053,12 +2053,12 @@ comments are now already in the form needed for the Python code: -.. code:: ipython2 +.. code:: python unstack = (S[1], S[0]), S[1] enstacken = S[0], (S[0], S[1]) -.. code:: ipython2 +.. code:: python print doc_from_stack_effect(*unstack) @@ -2068,7 +2068,7 @@ comments are now already in the form needed for the Python code: ([.1.] --) -.. code:: ipython2 +.. code:: python print doc_from_stack_effect(*enstacken) @@ -2078,7 +2078,7 @@ comments are now already in the form needed for the Python code: (-- [.0.]) -.. code:: ipython2 +.. code:: python print doc_from_stack_effect(*C(cons, unstack)) @@ -2088,7 +2088,7 @@ comments are now already in the form needed for the Python code: (a1 [.1.] -- a1) -.. code:: ipython2 +.. code:: python print doc_from_stack_effect(*C(cons, enstacken)) @@ -2098,7 +2098,7 @@ comments are now already in the form needed for the Python code: (a1 [.1.] -- [[a1 .1.] .2.]) -.. code:: ipython2 +.. code:: python C(cons, unstack) @@ -2117,7 +2117,7 @@ Part VI: Multiple Stack Effects … -.. code:: ipython2 +.. code:: python class IntJoyType(NumberJoyType): prefix = 'i' @@ -2125,7 +2125,7 @@ Part VI: Multiple Stack Effects F = map(FloatJoyType, _R) I = map(IntJoyType, _R) -.. code:: ipython2 +.. code:: python muls = [ ((I[2], (I[1], S[0])), (I[3], S[0])), @@ -2134,7 +2134,7 @@ Part VI: Multiple Stack Effects ((F[2], (F[1], S[0])), (F[3], S[0])), ] -.. code:: ipython2 +.. code:: python for f in muls: print doc_from_stack_effect(*f) @@ -2148,7 +2148,7 @@ Part VI: Multiple Stack Effects (f1 f2 -- f3) -.. code:: ipython2 +.. code:: python for f in muls: try: @@ -2164,7 +2164,7 @@ Part VI: Multiple Stack Effects (a1 -- a1 a1) (f1 f2 -- f3) (f1 -- f2) -.. code:: ipython2 +.. code:: python from itertools import product @@ -2180,7 +2180,7 @@ Part VI: Multiple Stack Effects def MC(F, G): return sorted(set(meta_compose(F, G))) -.. code:: ipython2 +.. code:: python for f in MC([dup], [mul]): print doc_from_stack_effect(*f) @@ -2191,7 +2191,7 @@ Part VI: Multiple Stack Effects (n1 -- n2) -.. code:: ipython2 +.. code:: python for f in MC([dup], muls): print doc_from_stack_effect(*f) @@ -2264,7 +2264,7 @@ Giving us two unifiers: {c: a, d: b, .1.: .0.} {c: a, d: e, .1.: A* b .0.} -.. code:: ipython2 +.. code:: python class KleeneStar(object): @@ -2314,7 +2314,7 @@ Giving us two unifiers: Can now return multiple results… -.. code:: ipython2 +.. code:: python def unify(u, v, s=None): if s is None: @@ -2386,7 +2386,7 @@ Can now return multiple results… def stacky(thing): return thing.__class__ in {AnyJoyType, StackJoyType} -.. code:: ipython2 +.. code:: python a = (As[1], S[1]) a @@ -2400,7 +2400,7 @@ Can now return multiple results… -.. code:: ipython2 +.. code:: python b = (A[1], S[2]) b @@ -2414,7 +2414,7 @@ Can now return multiple results… -.. code:: ipython2 +.. code:: python for result in unify(b, a): print result, '->', update(result, a), update(result, b) @@ -2426,7 +2426,7 @@ Can now return multiple results… {a1: a10001, s2: (a1*, s1)} -> (a1*, s1) (a10001, (a1*, s1)) -.. code:: ipython2 +.. code:: python for result in unify(a, b): print result, '->', update(result, a), update(result, b) @@ -2446,7 +2446,7 @@ Can now return multiple results… (a1*, s1) [a1*] (a2, (a1*, s1)) [a2 a1*] -.. code:: ipython2 +.. code:: python sum_ = ((Ns[1], S[1]), S[0]), (N[0], S[0]) @@ -2458,7 +2458,7 @@ Can now return multiple results… ([n1* .1.] -- n0) -.. code:: ipython2 +.. code:: python f = (N[1], (N[2], (N[3], S[1]))), S[0] @@ -2470,7 +2470,7 @@ Can now return multiple results… (-- [n1 n2 n3 .1.]) -.. code:: ipython2 +.. code:: python for result in unify(sum_[0], f): print result, '->', update(result, sum_[1]) @@ -2489,7 +2489,7 @@ Can now return multiple results… This function has to be modified to yield multiple results. -.. code:: ipython2 +.. code:: python def compose(f, g): (f_in, f_out), (g_in, g_out) = f, g @@ -2501,7 +2501,7 @@ This function has to be modified to yield multiple results. -.. code:: ipython2 +.. code:: python def meta_compose(F, G): for f, g in product(F, G): @@ -2517,7 +2517,7 @@ This function has to be modified to yield multiple results. for fg in compose(f, g): yield delabel(fg) -.. code:: ipython2 +.. code:: python for f in MC([dup], muls): print doc_from_stack_effect(*f) @@ -2529,7 +2529,7 @@ This function has to be modified to yield multiple results. (i1 -- i2) -.. code:: ipython2 +.. code:: python @@ -2542,7 +2542,7 @@ This function has to be modified to yield multiple results. ([n1* .1.] -- [n1* .1.] n1) -.. code:: ipython2 +.. code:: python @@ -2556,7 +2556,7 @@ This function has to be modified to yield multiple results. (n1 [n1* .1.] -- n2) -.. code:: ipython2 +.. code:: python sum_ = (((N[1], (Ns[1], S[1])), S[0]), (N[0], S[0])) print doc_from_stack_effect(*cons), @@ -2571,7 +2571,7 @@ This function has to be modified to yield multiple results. (a1 [.1.] -- [a1 .1.]) ([n1 n1* .1.] -- n0) (n1 [n1* .1.] -- n2) -.. code:: ipython2 +.. code:: python a = (A[4], (As[1], (A[3], S[1]))) a @@ -2585,7 +2585,7 @@ This function has to be modified to yield multiple results. -.. code:: ipython2 +.. code:: python b = (A[1], (A[2], S[2])) b @@ -2599,7 +2599,7 @@ This function has to be modified to yield multiple results. -.. code:: ipython2 +.. code:: python for result in unify(b, a): print result @@ -2611,7 +2611,7 @@ This function has to be modified to yield multiple results. {a1: a4, s2: (a1*, (a3, s1)), a2: a10003} -.. code:: ipython2 +.. code:: python for result in unify(a, b): print result @@ -2681,7 +2681,7 @@ We need a type variable for Joy functions that can go in our expressions and be used by the hybrid inferencer/interpreter. They have to store a name and a list of stack effects. -.. code:: ipython2 +.. code:: python class FunctionJoyType(AnyJoyType): @@ -2703,14 +2703,14 @@ Specialized for Simple Functions and Combinators For non-combinator functions the stack effects list contains stack effect comments (represented by pairs of cons-lists as described above.) -.. code:: ipython2 +.. code:: python class SymbolJoyType(FunctionJoyType): prefix = 'F' For combinators the list contains Python functions. -.. code:: ipython2 +.. code:: python class CombinatorJoyType(FunctionJoyType): @@ -2731,7 +2731,7 @@ For combinators the list contains Python functions. For simple combinators that have only one effect (like ``dip``) you only need one function and it can be the combinator itself. -.. code:: ipython2 +.. code:: python import joy.library @@ -2741,7 +2741,7 @@ For combinators that can have more than one effect (like ``branch``) you have to write functions that each implement the action of one of the effects. -.. code:: ipython2 +.. code:: python def branch_true(stack, expression, dictionary): (then, (else_, (flag, stack))) = stack @@ -2771,7 +2771,7 @@ updated along with the stack effects after doing unification or we risk losing useful information. This was a straightforward, if awkward, modification to the call structure of ``meta_compose()`` et. al. -.. code:: ipython2 +.. code:: python ID = S[0], S[0] # Identity function. @@ -2833,7 +2833,7 @@ cruft to convert the definitions in ``DEFS`` to the new ``SymbolJoyType`` objects, and some combinators. Here is an example of output from the current code : -.. code:: ipython2 +.. code:: python 1/0 # (Don't try to run this cell! It's not going to work. This is "read only" code heh..) @@ -2956,7 +2956,7 @@ module. But if you’re interested in all that you should just use Prolog! Anyhow, type *checking* is a few easy steps away. -.. code:: ipython2 +.. code:: python def _ge(self, other): return (issubclass(other.__class__, self.__class__) diff --git a/docs/sphinx_docs/notebooks/Zipper.rst b/docs/sphinx_docs/notebooks/Zipper.rst index dc4f996..c44343a 100644 --- a/docs/sphinx_docs/notebooks/Zipper.rst +++ b/docs/sphinx_docs/notebooks/Zipper.rst @@ -10,7 +10,7 @@ Huet `__ out of sequences. -.. code:: ipython2 +.. code:: python J('[1 [2 [3 4 25 6] 7] 8]') @@ -54,14 +54,14 @@ show the trace so you can see how it works. If we were going to use these a lot it would make sense to write Python versions for efficiency, but see below. -.. code:: ipython2 +.. code:: python define('z-down == [] swap uncons swap') define('z-up == swons swap shunt') define('z-right == [swons] cons dip uncons swap') define('z-left == swons [uncons swap] dip swap') -.. code:: ipython2 +.. code:: python V('[1 [2 [3 4 25 6] 7] 8] z-down') @@ -77,7 +77,7 @@ but see below. [] [[2 [3 4 25 6] 7] 8] 1 . -.. code:: ipython2 +.. code:: python V('[] [[2 [3 4 25 6] 7] 8] 1 z-right') @@ -101,7 +101,7 @@ but see below. [1] [8] [2 [3 4 25 6] 7] . -.. code:: ipython2 +.. code:: python J('[1] [8] [2 [3 4 25 6] 7] z-down') @@ -111,7 +111,7 @@ but see below. [1] [8] [] [[3 4 25 6] 7] 2 -.. code:: ipython2 +.. code:: python J('[1] [8] [] [[3 4 25 6] 7] 2 z-right') @@ -121,7 +121,7 @@ but see below. [1] [8] [2] [7] [3 4 25 6] -.. code:: ipython2 +.. code:: python J('[1] [8] [2] [7] [3 4 25 6] z-down') @@ -131,7 +131,7 @@ but see below. [1] [8] [2] [7] [] [4 25 6] 3 -.. code:: ipython2 +.. code:: python J('[1] [8] [2] [7] [] [4 25 6] 3 z-right') @@ -141,7 +141,7 @@ but see below. [1] [8] [2] [7] [3] [25 6] 4 -.. code:: ipython2 +.. code:: python J('[1] [8] [2] [7] [3] [25 6] 4 z-right') @@ -151,7 +151,7 @@ but see below. [1] [8] [2] [7] [4 3] [6] 25 -.. code:: ipython2 +.. code:: python J('[1] [8] [2] [7] [4 3] [6] 25 sqr') @@ -161,7 +161,7 @@ but see below. [1] [8] [2] [7] [4 3] [6] 625 -.. code:: ipython2 +.. code:: python V('[1] [8] [2] [7] [4 3] [6] 625 z-up') @@ -184,7 +184,7 @@ but see below. [1] [8] [2] [7] [3 4 625 6] . -.. code:: ipython2 +.. code:: python J('[1] [8] [2] [7] [3 4 625 6] z-up') @@ -194,7 +194,7 @@ but see below. [1] [8] [2 [3 4 625 6] 7] -.. code:: ipython2 +.. code:: python J('[1] [8] [2 [3 4 625 6] 7] z-up') @@ -210,7 +210,7 @@ but see below. In Joy we have the ``dip`` and ``infra`` combinators which can “target” or “address” any particular item in a Joy tree structure. -.. code:: ipython2 +.. code:: python V('[1 [2 [3 4 25 6] 7] 8] [[[[[[sqr] dipd] infra] dip] infra] dip] infra') @@ -270,13 +270,13 @@ been embedded in a nested series of quoted programs, e.g.: The ``Z`` function isn’t hard to make. -.. code:: ipython2 +.. code:: python define('Z == [[] cons cons] step i') Here it is in action in a simplified scenario. -.. code:: ipython2 +.. code:: python V('1 [2 3 4] Z') @@ -314,7 +314,7 @@ Here it is in action in a simplified scenario. And here it is doing the main thing. -.. code:: ipython2 +.. code:: python J('[1 [2 [3 4 25 6] 7] 8] [sqr] [dip dip infra dip infra dip infra] Z')