Change back to CLP(FD) semantics.
Minor changes to parser to make it less logical but a little firmer. (E.g. ints can't be backtracked into becoming symbols!)
This commit is contained in:
parent
36ec93e46b
commit
1ecb5be278
107
thun/thun.pl
107
thun/thun.pl
|
|
@ -22,41 +22,6 @@
|
|||
:- dynamic def/2.
|
||||
|
||||
|
||||
/*
|
||||
|
||||
To handle comparision operators the possibility of exceptions due to
|
||||
insufficiently instantiated arguments must be handled. First try to make
|
||||
the comparison and set the result to a Boolean atom. If an exception
|
||||
happens just leave the comparison expression as the result and some other
|
||||
function or combinator will deal with it. Example:
|
||||
|
||||
func(>, [A, B|S], [C|S]) :- catch(
|
||||
(B > A -> C=true ; C=false),
|
||||
_,
|
||||
C=(B>A) % in case of error.
|
||||
).
|
||||
|
||||
To save on conceptual overhead I've defined a term_expansion/2 that sets
|
||||
up the func/3 for each op.
|
||||
*/
|
||||
|
||||
term_expansion(comparison_operator(X), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [X, B, A], catch((F -> C=true ; C=false), _, C=F))).
|
||||
|
||||
% I don't use Prolog-compatible op symbols in all cases.
|
||||
term_expansion(comparison_operator(X, Y), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [Y, B, A], catch((F -> C=true ; C=false), _, C=F))).
|
||||
|
||||
% Likewise for math operators, try to evaluate, otherwise use the
|
||||
% symbolic form.
|
||||
|
||||
term_expansion(math_operator(X), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [X, B, A], catch(C is F, _, C=F))).
|
||||
|
||||
term_expansion(math_operator(X, Y), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [Y, B, A], catch(C is F, _, C=F))).
|
||||
|
||||
|
||||
/*
|
||||
An entry point.
|
||||
*/
|
||||
|
|
@ -116,9 +81,12 @@ list literals to Prolog lists.
|
|||
joy_parse([T|J]) --> blanks, joy_term(T), blanks, joy_parse(J).
|
||||
joy_parse([]) --> [].
|
||||
|
||||
joy_term(J) --> integer(J) | "[", joy_parse(J), "]" | symbol(J).
|
||||
joy_term(J) --> integer(J), !.
|
||||
joy_term(J) --> "[", !, joy_parse(J), "]".
|
||||
joy_term(J) --> symbol(J).
|
||||
|
||||
symbol(C) --> chars(Chars), {Chars \= `==`, atom_string(C, Chars)}.
|
||||
symbol(_) --> "==", !, {fail}. % prevents '==' parsing as [= =].
|
||||
symbol(C) --> chars(Chars), !, {atom_string(C, Chars)}.
|
||||
|
||||
chars([Ch|Rest]) --> char(Ch), chars(Rest).
|
||||
chars([Ch]) --> char(Ch).
|
||||
|
|
@ -163,21 +131,6 @@ literal([_|_]).
|
|||
literal(true).
|
||||
literal(false).
|
||||
|
||||
% Symbolic math expressions are literals.
|
||||
literal(_+_).
|
||||
literal(_-_).
|
||||
literal(_*_).
|
||||
literal(_/_).
|
||||
literal(_ mod _).
|
||||
|
||||
% Symbolic comparisons are literals.
|
||||
literal(_>_).
|
||||
literal(_<_).
|
||||
literal(_>=_).
|
||||
literal(_=<_).
|
||||
literal(_=:=_).
|
||||
literal(_=\=_).
|
||||
|
||||
|
||||
/*
|
||||
Functions
|
||||
|
|
@ -190,18 +143,6 @@ func(swap, [A, B|S], [B, A|S]).
|
|||
func(dup, [A|S], [A, A|S]).
|
||||
func(pop, [_|S], S ).
|
||||
|
||||
% Symbolic math. Compute the answer, or derivative, or whatever, later.
|
||||
math_operator(+).
|
||||
math_operator(-).
|
||||
math_operator(*).
|
||||
math_operator(/).
|
||||
math_operator(mod).
|
||||
|
||||
% Attempt to calculate the value of a symbolic math expression.
|
||||
func(calc, [A|S], [B|S]) :- B is A.
|
||||
|
||||
func(sqrt, [A|S], [sqrt(A)|S]).
|
||||
|
||||
func(concat, [A, B|S], [C|S]) :- append(B, A, C).
|
||||
func(flatten, [A|S], [B|S]) :- flatten(A, B).
|
||||
func(swaack, [R|S], [S|R]).
|
||||
|
|
@ -229,13 +170,25 @@ func(bool, [false|S], [false|S]) :- !.
|
|||
|
||||
func(bool, [_|S], [true|S]).
|
||||
|
||||
comparison_operator(>).
|
||||
comparison_operator(<).
|
||||
comparison_operator(>=).
|
||||
comparison_operator(<=, =<).
|
||||
comparison_operator(=, =:=).
|
||||
comparison_operator(<>, =\=).
|
||||
func( + , [A, B|S], [C|S]) :- C #= A + B.
|
||||
func( - , [A, B|S], [C|S]) :- C #= B - A.
|
||||
func( * , [A, B|S], [C|S]) :- C #= A * B.
|
||||
func( / , [A, B|S], [C|S]) :- C #= B div A.
|
||||
func('%', [A, B|S], [C|S]) :- C #= B mod A.
|
||||
|
||||
func('/%', [A, B|S], [C, D|S]) :- C #= A div B, D #= A mod B.
|
||||
func( pm , [A, B|S], [C, D|S]) :- C #= A + B, D #= B - A.
|
||||
|
||||
func(>, [A, B|S], [T|S]) :- B #> A #<==> R, r_truth(R, T).
|
||||
func(<, [A, B|S], [T|S]) :- B #< A #<==> R, r_truth(R, T).
|
||||
func(=, [A, B|S], [T|S]) :- B #= A #<==> R, r_truth(R, T).
|
||||
func(>=, [A, B|S], [T|S]) :- B #>= A #<==> R, r_truth(R, T).
|
||||
func(<=, [A, B|S], [T|S]) :- B #=< A #<==> R, r_truth(R, T).
|
||||
func(<>, [A, B|S], [T|S]) :- B #\= A #<==> R, r_truth(R, T).
|
||||
|
||||
|
||||
r_truth(0, false).
|
||||
r_truth(1, true).
|
||||
|
||||
/*
|
||||
Combinators
|
||||
|
|
@ -249,23 +202,9 @@ combo(dupdip, [P, X|S], [X|S], Ei, Eo) :- append(P, [X|Ei], Eo).
|
|||
|
||||
combo(branch, [T, _, true|S], S, Ei, Eo) :- append(T, Ei, Eo).
|
||||
combo(branch, [_, F, false|S], S, Ei, Eo) :- append(F, Ei, Eo).
|
||||
combo(branch, [T, F, Expr|S], S, Ei, Eo) :-
|
||||
\+ Expr = true, \+ Expr = false,
|
||||
catch( % Try Expr and do one or the other,
|
||||
(Expr -> append(T, Ei, Eo) ; append(F, Ei, Eo)),
|
||||
_, % If Expr don't grok, try both branches.
|
||||
(append(T, Ei, Eo) ; append(F, Ei, Eo))
|
||||
).
|
||||
|
||||
combo(loop, [_, false|S], S, E, E ).
|
||||
combo(loop, [B, true|S], S, Ei, Eo) :- append(B, [B, loop|Ei], Eo).
|
||||
combo(loop, [B, Expr|S], S, Ei, Eo) :-
|
||||
\+ Expr = true, \+ Expr = false,
|
||||
catch( % Try Expr and do one or the other,
|
||||
(Expr -> append(B, [B, loop|Ei], Eo) ; Ei=Eo),
|
||||
_, % If Expr don't grok, try both branches.
|
||||
(Ei=Eo ; append(B, [B, loop|Ei], Eo))
|
||||
).
|
||||
|
||||
combo(step, [_, []|S], S, E, E ).
|
||||
combo(step, [P, [X]|S], [X|S], Ei, Eo) :- !, append(P, Ei, Eo).
|
||||
|
|
|
|||
Loading…
Reference in New Issue