Make a version for GNU Prolog compiler.
This commit is contained in:
parent
10a23c5c68
commit
1ce9544bcc
|
|
@ -0,0 +1,8 @@
|
|||
|
||||
|
||||
thun: thun.pl
|
||||
gplc -o thun thun.pl
|
||||
|
||||
foo: foo.pl
|
||||
gplc -o foo foo.pl
|
||||
|
||||
|
|
@ -0,0 +1 @@
|
|||
gplc --min-size -o thun thun.pl util.pl
|
||||
|
|
@ -0,0 +1,681 @@
|
|||
/*
|
||||
|
||||
Copyright © 2018-2019 Simon Forman
|
||||
|
||||
This file is part of Thun
|
||||
|
||||
Thun is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Thun is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Thun. If not see <http://www.gnu.org/licenses/>.
|
||||
|
||||
The Joy interpreter that this implements is pretty crude. the only types
|
||||
are 16-bit integers and linked lists. The lists are 32-bit words divided
|
||||
into two 16-bit fields. The high half is the node value and the low half
|
||||
points directly (not offset) to the next cell, zero terminates the list.
|
||||
|
||||
The expression is expected to be already written in RAM as a linked list at
|
||||
the time the mainloop starts. As yet there is no support for actually doing
|
||||
this. Both the new stack and expression cells are written to the same heap
|
||||
intermixed. The stack and expression pointers never decrease, the whole
|
||||
history of the computation is recorded in RAM. If the computation of the
|
||||
expression overruns the end of RAM (or 16-bits whichever comes first) the
|
||||
machine crashes.
|
||||
|
||||
At the moment, functions are recognized by setting high bit, but I don't
|
||||
think I remembered to set the bits during compilation, so it won't work
|
||||
at all right now. Er... Boo. Anyhow, the whole thing is very crude and
|
||||
not at all what I am hoping eventually to build.
|
||||
|
||||
But it's a start, and I feel good about emitting machine code (even if the
|
||||
program doesn't do anything useful yet.)
|
||||
|
||||
*/
|
||||
:- use_module(library(assoc)).
|
||||
:- use_module(library(clpfd)).
|
||||
|
||||
|
||||
do :- Program = [
|
||||
ヲ,∅,⟴,ヵ,メ,ョ,
|
||||
[グ,ケ,ゲ,ド,ゴ,サ],ヮ(cons),
|
||||
[ザ,シ],ヮ(dup),
|
||||
[グ,ス,[],[ジ,ス,[ズ,セ,ス,[ゼ,ソ],[タ,ゾ],ヰ,ヂ],ヱ],ヰ,チ],ヮ(i),
|
||||
[ヶ,ペ],ワ(new),
|
||||
[ナ,ズ,セ,ネ,ヒ,ド,ャ,ペ],ワ(swap),
|
||||
[new,cons],≡(unit),
|
||||
[dup,i],≡(x),
|
||||
[swap,cons],≡(swons)
|
||||
],
|
||||
compile_program(Program, Binary),
|
||||
write_binary('joy_asm.bin', Binary).
|
||||
|
||||
|
||||
compile_program(Program, Binary) :-
|
||||
phrase((init, ⦾(Program, IR)), [], [Context]),
|
||||
phrase(⟐(IR), ASM),
|
||||
phrase(linker(ASM), EnumeratedASM),
|
||||
foo(Context),
|
||||
phrase(asm(EnumeratedASM), Binary).
|
||||
|
||||
foo(Context) :-
|
||||
get_assoc(dictionary, Context, D),
|
||||
assoc_to_list(D, Dictionary),
|
||||
portray_clause(Dictionary).
|
||||
|
||||
|
||||
/*
|
||||
|
||||
This first stage ⦾//2 converts the Joy description into a kind of intermediate
|
||||
representation that models the Joy interpreter on top of the machine but doesn't
|
||||
actually use assembly instructions. It also manages the named registers and
|
||||
memory locations so thet don't appear in the program.
|
||||
|
||||
The idea here is to extract the low-level "primitives" needed to define the Joy
|
||||
interpreter to make it easier to think about (and maybe eventually retarget other
|
||||
CPUs.)
|
||||
|
||||
*/
|
||||
|
||||
⦾([], []) --> [].
|
||||
|
||||
⦾([ヲ|Terms], Ts) --> % Preamble.
|
||||
% Initialize context/state/symbol table.
|
||||
set(dict_ptr, 11), % Reg 11 is a pointer used during func lookup.
|
||||
set(dict_top, 12), % Reg 12 points to top of dictionary.
|
||||
set(dict, 0), % Address of top of dict during compilation.
|
||||
set(done, _DONE), % DONE label (logic variable.)
|
||||
set(expr, 4), % Reg 4 points to expression.
|
||||
set(halt, _HALT), % HALT label (logic variable.)
|
||||
set(main, _MAIN), % MAIN label (logic variable.)
|
||||
set(reset, _Reset), % Reset label (logic variable.)
|
||||
set(sp, 2), % Reg 2 points to just under top of stack.
|
||||
set(temp0, 6), % Reg 6 is a temp var.
|
||||
set(temp1, 7), % Reg 7 is a temp var.
|
||||
set(temp2, 8), % Reg 8 is a temp var.
|
||||
set(temp3, 9), % Reg 9 is a temp var.
|
||||
set(term, 5), % Reg 4 holds current term.
|
||||
set(tos, 3), % Reg 3 holds Top of Stack.
|
||||
⦾(Terms, Ts).
|
||||
|
||||
⦾([ヵ|Terms], [ % Initialization.
|
||||
jump(Over), % Oberon bootloader writes MemLim to RAM[12] and
|
||||
asm(allocate(_, 16)), % stackOrg to RAM[24], we don't need these
|
||||
label(Over), % but they must not be allowed to corrupt our code.
|
||||
set_reg_const(0, 0), % zero out the root cell.
|
||||
write_ram(0, 0),
|
||||
set_reg_const(SP, 0x1000),
|
||||
set_reg_const(EXPR, 0x500),
|
||||
set_reg_label(DICT_TOP, LastWord),
|
||||
set_reg_const(TOS, 0),
|
||||
set_reg_const(TERM, 0),
|
||||
asm(store_word(TOS, SP, 0)) % RAM[SP] := 0
|
||||
|Ts]) -->
|
||||
get([dict_top, DICT_TOP, expr, EXPR, sp, SP, term, TERM, tos, TOS]),
|
||||
⦾(Terms, Ts), get(dict, LastWord).
|
||||
|
||||
⦾([メ|Terms], [ % Mainloop.
|
||||
label(MAIN),
|
||||
if_zero(EXPR, HALT),
|
||||
deref(EXPR),
|
||||
split_word(TERM, EXPR),
|
||||
if_literal(TERM, PUSH),
|
||||
lookup(DICT_PTR, DICT_TOP, TERM, HALT), % Jump to command or if not found halt.
|
||||
label(PUSH), push(TOS, TERM, SP), % stack = TERM, stack
|
||||
label(DONE), write_ram(SP, TOS), % RAM[SP] := TOS
|
||||
jump(MAIN)
|
||||
|Ts]) -->
|
||||
get([dict_ptr, DICT_PTR, dict_top, DICT_TOP, done, DONE, expr, EXPR,
|
||||
halt, HALT, main, MAIN, sp, SP, term, TERM, tos, TOS]),
|
||||
⦾(Terms, Ts).
|
||||
|
||||
⦾([Body, ≡(NameAtom)|Terms], [defi(Name, B, Prev, I, SP, TOS)|Ts]) -->
|
||||
get(dict, Prev), set(dict, Name), get([sp, SP, tos, TOS]),
|
||||
inscribe(NameAtom, Name), ⦾(Terms, Ts), lookup(i, I), lookup(Body, B).
|
||||
|
||||
⦾([Body, ヮ(NameAtom)|Terms], [definition(Name, DONE, B, Prev)|Ts]) -->
|
||||
get(dict, Prev), set(dict, Name), inscribe(NameAtom, Name),
|
||||
get(done, DONE), ⦾([Body, Terms], [B, Ts]).
|
||||
|
||||
⦾([Body, ワ(NameAtom)|Terms], [definition(Name, MAIN, B, Prev)|Ts]) -->
|
||||
get(dict, Prev), set(dict, Name), inscribe(NameAtom, Name),
|
||||
get(main, MAIN), ⦾([Body, Terms], [B, Ts]).
|
||||
|
||||
⦾([P, T, E, ヰ|Terms], [br(Predicate, Then, Else)|Ts]) -->
|
||||
⦾([P, T, E, Terms], [Predicate, Then, Else, Ts]).
|
||||
|
||||
⦾([P, B, ヱ|Terms], [repeat_until(Predicate, Body)|Ts]) -->
|
||||
⦾([P, B, Terms], [Predicate, Body, Ts]).
|
||||
|
||||
⦾([Term|Terms], [T|Ts]) --> ⦾(Term, T), ⦾(Terms, Ts).
|
||||
|
||||
⦾(∅, dw(0)) --> [].
|
||||
⦾(⟴, label(Reset)) --> get(reset, Reset).
|
||||
⦾(ョ, halt(HALT)) --> get(halt, HALT).
|
||||
⦾(グ, pop(TEMP0, TOS)) --> get(temp0, TEMP0), get(tos, TOS).
|
||||
⦾(シ, push(TOS, TOS, SP)) --> get(tos, TOS), get(sp, SP).
|
||||
⦾(ケ, high_half(TEMP1, TOS)) --> get(temp1, TEMP1), get(tos, TOS).
|
||||
⦾(サ, merge(SP, TOS)) --> get(tos, TOS), get(sp, SP).
|
||||
⦾(ザ, swap_halves(TOS)) --> get(tos, TOS).
|
||||
⦾(ズ, deref(TEMP0)) --> get(temp0, TEMP0).
|
||||
⦾(ス, if_zero(TEMP0)) --> get(temp0, TEMP0).
|
||||
⦾(ソ, asm(mov(EXPR, TEMP3))) --> get(expr, EXPR), get(temp3, TEMP3).
|
||||
⦾(ャ, asm(ior(TOS, TEMP1, SP))) --> get(tos, TOS), get(temp1, TEMP1), get(sp, SP).
|
||||
⦾(タ, add_const(TEMP2, SP, 8)) --> get(temp2, TEMP2), get(sp, SP).
|
||||
⦾(ジ, add_const(TEMP3, SP, 4)) --> get(temp3, TEMP3), get(sp, SP).
|
||||
⦾(チ, add_const(SP, SP, 4)) --> get(sp, SP).
|
||||
⦾(セ, chop_word(TEMP1, TEMP0)) --> get(temp0, TEMP0), get(temp1, TEMP1).
|
||||
⦾(ト, chop_word(TEMP0, TOS)) --> get(temp0, TEMP0), get(tos, TOS).
|
||||
⦾(ネ, chop_word(TEMP2, TOS)) --> get(temp2, TEMP2), get(tos, TOS).
|
||||
⦾(ゼ, or_inplace(TEMP1, EXPR)) --> get(expr, EXPR), get(temp1, TEMP1).
|
||||
⦾(ゲ, or_inplace(TEMP0, TEMP1)) --> get(temp0, TEMP0), get(temp1, TEMP1).
|
||||
⦾(ヒ, or_inplace(TEMP0, TEMP2)) --> get(temp0, TEMP0), get(temp2, TEMP2).
|
||||
⦾(ゾ, or_inplace(TEMP1, TEMP2)) --> get(temp1, TEMP1), get(temp2, TEMP2).
|
||||
⦾(ド, write_cell(TEMP0, SP)) --> get(temp0, TEMP0), get(sp, SP).
|
||||
⦾(ヂ, write_cell(TEMP1, SP)) --> get(temp1, TEMP1), get(sp, SP).
|
||||
⦾(ペ, write_cell(TOS, SP)) --> get(tos, TOS), get(sp, SP).
|
||||
⦾(ゴ, low_half(TOS)) --> get(tos, TOS).
|
||||
⦾(ナ, low_half(TEMP0, TOS)) --> get(temp0, TEMP0), get(tos, TOS).
|
||||
⦾(ヶ, low_half(TOS, SP)) --> get(sp, SP), get(tos, TOS).
|
||||
|
||||
|
||||
/*
|
||||
|
||||
Context (state) manipulation for the ⦾//2 relation.
|
||||
|
||||
Association lists are used to keep a kind of symbol table as well as a dictionary
|
||||
of name atoms to address logic variables for defined Joy functions.
|
||||
|
||||
*/
|
||||
|
||||
init, [Context] -->
|
||||
{empty_assoc(C), empty_assoc(Dictionary),
|
||||
put_assoc(dictionary, C, Dictionary, Context)}.
|
||||
|
||||
get([]) --> !.
|
||||
get([Key, Value|Ts]) --> !, get(Key, Value), get(Ts).
|
||||
|
||||
get(Key, Value) --> state(Context), {get_assoc(Key, Context, Value)}.
|
||||
set(Key, Value) --> state(ContextIn, ContextOut),
|
||||
{put_assoc(Key, ContextIn, Value, ContextOut)}.
|
||||
|
||||
inscribe(NameAtom, Label) --> state(ContextIn, ContextOut),
|
||||
{get_assoc(dictionary, ContextIn, Din),
|
||||
put_assoc(NameAtom, Din, Label, Dout),
|
||||
put_assoc(dictionary, ContextIn, Dout, ContextOut)}.
|
||||
|
||||
lookup([], []) --> !.
|
||||
lookup([T|Ts], [V|Vs]) --> !, lookup(T, V), lookup(Ts, Vs).
|
||||
lookup(NameAtom, Label) --> state(Context),
|
||||
{get_assoc(dictionary, Context, D), get_assoc(NameAtom, D, Label)}.
|
||||
|
||||
state(S), [S] --> [S].
|
||||
state(S0, S), [S] --> [S0].
|
||||
|
||||
|
||||
/*
|
||||
|
||||
This second stage ⟐//1 converts the intermediate representation to assembly
|
||||
language.
|
||||
|
||||
*/
|
||||
|
||||
⟐([]) --> [].
|
||||
⟐([Term|Terms]) --> ⟐(Term), ⟐(Terms).
|
||||
|
||||
⟐(if_literal(Reg, Label)) --> % commands marked by setting high bit.
|
||||
[and_imm(0, Reg, 0x8000), % 1 << 15
|
||||
eq_offset(Label)].
|
||||
|
||||
% if reg = 0 jump to label.
|
||||
⟐(if_zero(Reg, Label)) --> [sub_imm(Reg, Reg, 0), eq_offset(Label)].
|
||||
|
||||
⟐(set_reg_const(Reg, Immediate)) --> {Immediate >= -(2^15), Immediate < 2^16}, !,
|
||||
[mov_imm(Reg, Immediate)].
|
||||
|
||||
⟐(set_reg_const(Reg, Immediate)) --> {Immediate >= 0, Immediate < 2^33}, !, % FIXME: handle negative numbers.
|
||||
{high_half_word(Immediate, HighHalf), low_half_word(Immediate, LowHalf)},
|
||||
[ mov_imm_with_shift(Reg, HighHalf), ior_imm(Reg, Reg, LowHalf)].
|
||||
|
||||
⟐(set_reg_label(Reg, Label)) --> [mov_imm(Reg, Label)].
|
||||
|
||||
⟐( noop) --> [mov(0, 0)].
|
||||
⟐( halt(Halt)) --> [label(Halt), do_offset(Halt)].
|
||||
⟐( asm(ASM)) --> [ASM].
|
||||
⟐(label(Label)) --> [label(Label)].
|
||||
⟐( jump(Label)) --> [do_offset(Label)].
|
||||
⟐( dw(Int)) --> [word(Int)].
|
||||
|
||||
⟐( low_half(Reg)) --> [and_imm(Reg, Reg, 0xffff)].
|
||||
⟐( low_half(To, From)) --> [and_imm(To, From, 0xffff)].
|
||||
⟐( high_half(Reg)) --> [mov_imm_with_shift(0, 0xffff), and(Reg, Reg, 0)].
|
||||
⟐(high_half(To, From)) --> [mov_imm_with_shift(0, 0xffff), and(To, From, 0)].
|
||||
|
||||
⟐(swap_halves(Register)) --> [ror_imm(Register, Register, 16)].
|
||||
⟐(swap_halves(To, From)) --> [ror_imm( To, From, 16)].
|
||||
|
||||
⟐(high_half_to(To, From)) --> ⟐([swap_halves(To, From), low_half(To)]).
|
||||
|
||||
⟐(split_word(To, From)) --> ⟐([high_half_to(To, From), low_half(From)]).
|
||||
|
||||
⟐(chop_word(To, From)) --> ⟐([high_half(To, From), low_half(From)]).
|
||||
|
||||
⟐(merge(SP, TOS)) -->
|
||||
[lsl_imm(0, SP, 16),
|
||||
ior(TOS, TOS, 0),
|
||||
add_imm(SP, SP, 4)].
|
||||
|
||||
⟐(push(TOS, TERM, SP)) -->
|
||||
[lsl_imm(TOS, TERM, 16), % TOS := TERM << 16
|
||||
ior(TOS, TOS, SP), % TOS := TOS | SP
|
||||
add_imm(SP, SP, 4)]. % SP += 1 (word, not byte)
|
||||
|
||||
⟐( write_ram(To, From)) --> [store_word(From, To, 0)].
|
||||
⟐(write_cell(From, SP)) --> [add_imm(SP, SP, 4), store_word(From, SP, 0)].
|
||||
|
||||
⟐(deref(Reg)) --> [load_word(Reg, Reg, 0)].
|
||||
|
||||
⟐(or_inplace(To, From)) --> [ior(To, To, From)].
|
||||
|
||||
⟐(definition(Label, Exit, Body, Prev)) -->
|
||||
⟐([
|
||||
dw(Prev),
|
||||
label(Label),
|
||||
Body,
|
||||
jump(Exit)
|
||||
]).
|
||||
|
||||
⟐(defi(Label, Body, Prev, I, SP, TOS)) -->
|
||||
⟐([dw(Prev),
|
||||
label(Label),
|
||||
defi_def(BodyLabel, SP, TOS),
|
||||
jump(I)]),
|
||||
dexpr(Body, BodyLabel).
|
||||
|
||||
⟐(defi_def(Label, SP, TOS)) -->
|
||||
[mov_imm_with_shift(TOS, Label),
|
||||
ior(TOS, TOS, SP)],
|
||||
⟐(write_cell(TOS, SP)).
|
||||
|
||||
⟐(lookup(PTR, TOP, TERM, Exit)) -->
|
||||
[mov(PTR, TOP), % point to the top of the dictionary.
|
||||
label(Lookup),
|
||||
sub(0, TERM, PTR), eq(PTR), % if the term is found jump to it,
|
||||
sub_imm(PTR, PTR, 4), % else load the next pointer.
|
||||
load_word(PTR, PTR, 0),
|
||||
sub_imm(PTR, PTR, 0), eq_offset(Exit), % exit if it's zero.
|
||||
do_offset(Lookup)]. % loop to the top.
|
||||
|
||||
⟐(repeat_until(Condition, Body)) -->
|
||||
{add_label(Condition, End, ConditionL)},
|
||||
⟐([
|
||||
label(Loop),
|
||||
Body,
|
||||
ConditionL,
|
||||
jump(Loop),
|
||||
label(End)
|
||||
]).
|
||||
|
||||
⟐(br(Condition, [], Else)) --> !,
|
||||
{add_label(Condition, END, ConditionL)},
|
||||
⟐([ConditionL, Else, label(END)]).
|
||||
|
||||
⟐(br(Condition, Then, Else)) -->
|
||||
{add_label(Condition, THEN, ConditionL)},
|
||||
⟐([
|
||||
ConditionL, Else, jump(END),
|
||||
label(THEN), Then, label(END)
|
||||
]).
|
||||
|
||||
⟐(add_const(To, From, Immediate)) --> [add_imm(To, From, Immediate)].
|
||||
|
||||
⟐(pop(Reg, TOS)) --> ⟐([split_word(Reg, TOS), deref(TOS)]).
|
||||
|
||||
|
||||
/*
|
||||
|
||||
Support for ⟐//1 second stage.
|
||||
|
||||
The dexpr//2 DCG establishes a sequence of labeled expr_cell/2 pseudo-assembly
|
||||
memory locations as a linked list that encodes a Prolog list of Joy function
|
||||
labels comprising e.g. the body of some Joy definition.
|
||||
|
||||
*/
|
||||
|
||||
dexpr([], 0) --> [].
|
||||
dexpr([Func|Rest], ThisCell) -->
|
||||
[label(ThisCell), expr_cell(Func, NextCell)],
|
||||
dexpr(Rest, NextCell).
|
||||
|
||||
/*
|
||||
|
||||
The add_label/3 relation is a meta-logical construct that accepts a comparision
|
||||
predicate (e.g. if_zero/2) and "patches" it by adding the Label logic variable
|
||||
to the end.
|
||||
|
||||
*/
|
||||
|
||||
add_label(CmpIn, Label, CmpOut) :-
|
||||
CmpIn =.. F,
|
||||
append(F, [Label], G),
|
||||
CmpOut =.. G.
|
||||
|
||||
/*
|
||||
|
||||
Two simple masking predicates.
|
||||
|
||||
*/
|
||||
|
||||
high_half_word(I, HighHalf) :- HighHalf is I >> 16 /\ 0xFFFF.
|
||||
low_half_word( I, LowHalf) :- LowHalf is I /\ 0xFFFF.
|
||||
|
||||
|
||||
/*
|
||||
|
||||
Linker
|
||||
|
||||
*/
|
||||
|
||||
linker(ASM) --> enumerate_asm(ASM, 0, _).
|
||||
|
||||
enumerate_asm( [], N, N) --> !, [].
|
||||
enumerate_asm( [Term|Terms], N, M) --> !, enumerate_asm(Term, N, O), enumerate_asm(Terms, O, M).
|
||||
enumerate_asm( label(N) , N, N) --> !, [].
|
||||
enumerate_asm(allocate(N, Bytes), N, M) --> !, {Bits is 8 * Bytes}, [skip(Bits)], {align(N, Bytes, M)}.
|
||||
enumerate_asm( Instr, N, M) --> [(Z, Instr)], {align(N, 0, Z), align(Z, 4, M)}.
|
||||
|
||||
align(_, Bytes, _) :- (Bytes < 0 -> write('Align negative number? No!')), !, fail.
|
||||
align(N, 1, M) :- !, M is N + 1.
|
||||
align(N, Bytes, M) :- N mod 4 =:= 0, !, M is N + Bytes.
|
||||
align(N, Bytes, M) :- Padding is 4 - (N mod 4), M is N + Bytes + Padding.
|
||||
|
||||
|
||||
/*
|
||||
|
||||
Assembler
|
||||
|
||||
*/
|
||||
|
||||
asm([]) --> !, [].
|
||||
asm([ skip(Bits)|Rest]) --> !, skip(Bits), asm(Rest).
|
||||
asm([(N, Instruction)|Rest]) --> !, asm(N, Instruction), asm(Rest).
|
||||
|
||||
asm(_, expr_cell(Func, NextCell)) --> !,
|
||||
{Data is (Func << 16) \/ NextCell}, asm(_, word(Data)).
|
||||
|
||||
asm(_, word(Word)) --> !, {binary_number(Bits, Word)}, collect(32, Bits).
|
||||
|
||||
asm(_, load_word(A, B, Offset)) --> !, instruction_format_F2(0, 0, A, B, Offset).
|
||||
asm(_, load_byte(A, B, Offset)) --> !, instruction_format_F2(0, 1, A, B, Offset).
|
||||
asm(_, store_word(A, B, Offset)) --> !, instruction_format_F2(1, 0, A, B, Offset).
|
||||
asm(_, store_byte(A, B, Offset)) --> !, instruction_format_F2(1, 1, A, B, Offset).
|
||||
|
||||
asm(_, mov(A, C)) --> instruction_format_F0(0, A, 0, mov, C).
|
||||
asm(_, mov_with_shift(A, C)) --> instruction_format_F0(1, A, 0, mov, C).
|
||||
|
||||
asm(_, mov_imm_with_shift(A, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(1, 0, A, 0, mov, Imm).
|
||||
asm(_, mov_imm_with_shift(A, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(1, 0, A, 0, mov, Imm).
|
||||
asm(_, mov_imm_with_shift(_, _)) --> {write('Immediate value out of bounds'), fail}.
|
||||
|
||||
asm(_, mov_imm(A, Imm) ) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, 0, mov, Imm).
|
||||
asm(_, mov_imm(A, Imm) ) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, 0, mov, Imm).
|
||||
asm(_, mov_imm(_, _) ) --> {write('Immediate value out of bounds'), fail}.
|
||||
|
||||
asm(_, add(A, B, C)) --> instruction_format_F0(0, A, B, add, C).
|
||||
asm(_, add_carry(A, B, C)) --> instruction_format_F0(1, A, B, add, C).
|
||||
asm(_, sub(A, B, C)) --> instruction_format_F0(0, A, B, sub, C).
|
||||
asm(_, sub_carry(A, B, C)) --> instruction_format_F0(1, A, B, sub, C).
|
||||
|
||||
asm(_, add_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, add, Imm).
|
||||
asm(_, add_imm(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(0, 0, A, B, add, Imm).
|
||||
asm(_, add_imm_carry(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(1, 1, A, B, add, Imm).
|
||||
asm(_, add_imm_carry(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(1, 0, A, B, add, Imm).
|
||||
asm(_, sub_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, sub, Imm).
|
||||
asm(_, sub_imm(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(0, 0, A, B, sub, Imm).
|
||||
asm(_, sub_imm_carry(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(1, 1, A, B, sub, Imm).
|
||||
asm(_, sub_imm_carry(A, B, Imm)) --> {pos_int15(Imm)}, !, instruction_format_F1(1, 0, A, B, sub, Imm).
|
||||
|
||||
asm(_, mul(A, B, C)) --> instruction_format_F0(0, A, B, mul, C).
|
||||
asm(_, mul_unsigned(A, B, C)) --> instruction_format_F0(1, A, B, mul, C).
|
||||
asm(_, mul_imm(A, B, Imm, U)) --> {neg_int15(Imm)}, !, instruction_format_F1(U, 1, A, B, mul, Imm).
|
||||
asm(_, mul_imm(A, B, Imm, U)) --> {pos_int15(Imm)}, !, instruction_format_F1(U, 0, A, B, mul, Imm).
|
||||
|
||||
asm(_, and(A, B, C)) --> instruction_format_F0(0, A, B, and, C).
|
||||
asm(_, ann(A, B, C)) --> instruction_format_F0(0, A, B, ann, C).
|
||||
asm(_, asr(A, B, C)) --> instruction_format_F0(0, A, B, asr, C).
|
||||
asm(_, div(A, B, C)) --> instruction_format_F0(0, A, B, div, C).
|
||||
asm(_, ior(A, B, C)) --> instruction_format_F0(0, A, B, ior, C).
|
||||
asm(_, lsl(A, B, C)) --> instruction_format_F0(0, A, B, lsl, C).
|
||||
asm(_, ror(A, B, C)) --> instruction_format_F0(0, A, B, ror, C).
|
||||
asm(_, xor(A, B, C)) --> instruction_format_F0(0, A, B, xor, C).
|
||||
|
||||
asm(_, and_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, and, Imm).
|
||||
asm(_, and_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, and, Imm).
|
||||
asm(_, ann_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, ann, Imm).
|
||||
asm(_, ann_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, ann, Imm).
|
||||
asm(_, asr_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, asr, Imm).
|
||||
asm(_, asr_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, asr, Imm).
|
||||
asm(_, div_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, div, Imm).
|
||||
asm(_, div_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, div, Imm).
|
||||
asm(_, ior_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, ior, Imm).
|
||||
asm(_, ior_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, ior, Imm).
|
||||
asm(_, lsl_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, lsl, Imm).
|
||||
asm(_, lsl_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, lsl, Imm).
|
||||
asm(_, ror_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, ror, Imm).
|
||||
asm(_, ror_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, ror, Imm).
|
||||
asm(_, xor_imm(A, B, Imm)) --> {neg_int15(Imm)}, !, instruction_format_F1(0, 1, A, B, xor, Imm).
|
||||
asm(_, xor_imm(A, B, Imm)) --> {pos_int16(Imm)}, !, instruction_format_F1(0, 0, A, B, xor, Imm).
|
||||
|
||||
asm(_, cc(C)) --> instruction_format_F3a(0, cc, C).
|
||||
asm(N, cc_offset(Label)) --> instruction_format_F3b(0, cc, Label, N).
|
||||
asm(_, cc_link(C)) --> instruction_format_F3a(1, cc, C).
|
||||
asm(N, cc_link_offset(Label)) --> instruction_format_F3b(1, cc, Label, N).
|
||||
asm(_, cs(C)) --> instruction_format_F3a(0, cs, C).
|
||||
asm(N, cs_offset(Label)) --> instruction_format_F3b(0, cs, Label, N).
|
||||
asm(_, cs_link(C)) --> instruction_format_F3a(1, cs, C).
|
||||
asm(N, cs_link_offset(Label)) --> instruction_format_F3b(1, cs, Label, N).
|
||||
asm(_, do(C)) --> instruction_format_F3a(0, do, C).
|
||||
asm(N, do_offset(Label)) --> instruction_format_F3b(0, do, Label, N).
|
||||
asm(_, do_link(C)) --> instruction_format_F3a(1, do, C).
|
||||
asm(N, do_link_offset(Label)) --> instruction_format_F3b(1, do, Label, N).
|
||||
asm(_, eq(C)) --> instruction_format_F3a(0, eq, C).
|
||||
asm(N, eq_offset(Label)) --> instruction_format_F3b(0, eq, Label, N).
|
||||
asm(_, eq_link(C)) --> instruction_format_F3a(1, eq, C).
|
||||
asm(N, eq_link_offset(Label)) --> instruction_format_F3b(1, eq, Label, N).
|
||||
asm(_, ge(C)) --> instruction_format_F3a(0, ge, C).
|
||||
asm(N, ge_offset(Label)) --> instruction_format_F3b(0, ge, Label, N).
|
||||
asm(_, ge_link(C)) --> instruction_format_F3a(1, ge, C).
|
||||
asm(N, ge_link_offset(Label)) --> instruction_format_F3b(1, ge, Label, N).
|
||||
asm(_, gt(C)) --> instruction_format_F3a(0, gt, C).
|
||||
asm(N, gt_offset(Label)) --> instruction_format_F3b(0, gt, Label, N).
|
||||
asm(_, gt_link(C)) --> instruction_format_F3a(1, gt, C).
|
||||
asm(N, gt_link_offset(Label)) --> instruction_format_F3b(1, gt, Label, N).
|
||||
asm(_, hi(C)) --> instruction_format_F3a(0, hi, C).
|
||||
asm(N, hi_offset(Label)) --> instruction_format_F3b(0, hi, Label, N).
|
||||
asm(_, hi_link(C)) --> instruction_format_F3a(1, hi, C).
|
||||
asm(N, hi_link_offset(Label)) --> instruction_format_F3b(1, hi, Label, N).
|
||||
asm(_, le(C)) --> instruction_format_F3a(0, le, C).
|
||||
asm(N, le_offset(Label)) --> instruction_format_F3b(0, le, Label, N).
|
||||
asm(_, le_link(C)) --> instruction_format_F3a(1, le, C).
|
||||
asm(N, le_link_offset(Label)) --> instruction_format_F3b(1, le, Label, N).
|
||||
asm(_, ls(C)) --> instruction_format_F3a(0, ls, C).
|
||||
asm(N, ls_offset(Label)) --> instruction_format_F3b(0, ls, Label, N).
|
||||
asm(_, ls_link(C)) --> instruction_format_F3a(1, ls, C).
|
||||
asm(N, ls_link_offset(Label)) --> instruction_format_F3b(1, ls, Label, N).
|
||||
asm(_, lt(C)) --> instruction_format_F3a(0, lt, C).
|
||||
asm(N, lt_offset(Label)) --> instruction_format_F3b(0, lt, Label, N).
|
||||
asm(_, lt_link(C)) --> instruction_format_F3a(1, lt, C).
|
||||
asm(N, lt_link_offset(Label)) --> instruction_format_F3b(1, lt, Label, N).
|
||||
asm(_, mi(C)) --> instruction_format_F3a(0, mi, C).
|
||||
asm(N, mi_offset(Label)) --> instruction_format_F3b(0, mi, Label, N).
|
||||
asm(_, mi_link(C)) --> instruction_format_F3a(1, mi, C).
|
||||
asm(N, mi_link_offset(Label)) --> instruction_format_F3b(1, mi, Label, N).
|
||||
asm(_, ne(C)) --> instruction_format_F3a(0, ne, C).
|
||||
asm(N, ne_offset(Label)) --> instruction_format_F3b(0, ne, Label, N).
|
||||
asm(_, ne_link(C)) --> instruction_format_F3a(1, ne, C).
|
||||
asm(N, ne_link_offset(Label)) --> instruction_format_F3b(1, ne, Label, N).
|
||||
asm(_, nv(C)) --> instruction_format_F3a(0, nv, C). % NeVer.
|
||||
asm(N, nv_offset(Label)) --> instruction_format_F3b(0, nv, Label, N).
|
||||
asm(_, nv_link(C)) --> instruction_format_F3a(1, nv, C).
|
||||
asm(N, nv_link_offset(Label)) --> instruction_format_F3b(1, nv, Label, N).
|
||||
asm(_, pl(C)) --> instruction_format_F3a(0, pl, C).
|
||||
asm(N, pl_offset(Label)) --> instruction_format_F3b(0, pl, Label, N).
|
||||
asm(_, pl_link(C)) --> instruction_format_F3a(1, pl, C).
|
||||
asm(N, pl_link_offset(Label)) --> instruction_format_F3b(1, pl, Label, N).
|
||||
asm(_, vc(C)) --> instruction_format_F3a(0, vc, C).
|
||||
asm(N, vc_offset(Label)) --> instruction_format_F3b(0, vc, Label, N).
|
||||
asm(_, vc_link(C)) --> instruction_format_F3a(1, vc, C).
|
||||
asm(N, vc_link_offset(Label)) --> instruction_format_F3b(1, vc, Label, N).
|
||||
asm(_, vs(C)) --> instruction_format_F3a(0, vs, C).
|
||||
asm(N, vs_offset(Label)) --> instruction_format_F3b(0, vs, Label, N).
|
||||
asm(_, vs_link(C)) --> instruction_format_F3a(1, vs, C).
|
||||
asm(N, vs_link_offset(Label)) --> instruction_format_F3b(1, vs, Label, N).
|
||||
|
||||
% This is the core of the assembler where the instruction formats are specified.
|
||||
|
||||
instruction_format_F0(U, A, B, Op, C ) --> [0, 0, U, 0], reg(A), reg(B), operation(Op), skip(12), reg(C).
|
||||
instruction_format_F1(U, V, A, B, Op, Im) --> [0, 1, U, V], reg(A), reg(B), operation(Op), immediate(Im).
|
||||
instruction_format_F2(U, V, A, B, Offset) --> [1, 0, U, V], reg(A), reg(B), offset(Offset).
|
||||
instruction_format_F3a(V, Cond, C ) --> [1, 1, 0, V], cond(Cond), skip(20), reg(C).
|
||||
instruction_format_F3b(V, Cond, To, Here) --> [1, 1, 1, V], cond(Cond), encode_jump_offset(To, Here).
|
||||
|
||||
immediate(Imm) --> encode_int(16, Imm), !.
|
||||
offset(Offset) --> encode_int(20, Offset), !.
|
||||
|
||||
skip(N) --> collect(N, Zeros), {Zeros ins 0..0}.
|
||||
|
||||
encode_jump_offset(To, Here) --> {Offset is ((To - Here) >> 2) - 1}, encode_int(24, Offset).
|
||||
|
||||
encode_int(Width, I) --> {I >= 0}, !, collect(Width, Bits), { binary_number(Bits, I) }, !.
|
||||
encode_int(Width, I) --> {I < 0}, !, collect(Width, Bits), {twos_compliment(Bits, I, Width)}, !.
|
||||
|
||||
collect(N, []) --> {N =< 0}.
|
||||
collect(N, [X|Rest]) --> {N > 0, N0 is N - 1}, [X], collect(N0, Rest).
|
||||
|
||||
reg( 0) --> [0, 0, 0, 0].
|
||||
reg( 1) --> [0, 0, 0, 1].
|
||||
reg( 2) --> [0, 0, 1, 0].
|
||||
reg( 3) --> [0, 0, 1, 1].
|
||||
reg( 4) --> [0, 1, 0, 0].
|
||||
reg( 5) --> [0, 1, 0, 1].
|
||||
reg( 6) --> [0, 1, 1, 0].
|
||||
reg( 7) --> [0, 1, 1, 1].
|
||||
reg( 8) --> [1, 0, 0, 0].
|
||||
reg( 9) --> [1, 0, 0, 1].
|
||||
reg(10) --> [1, 0, 1, 0].
|
||||
reg(11) --> [1, 0, 1, 1].
|
||||
reg(12) --> [1, 1, 0, 0].
|
||||
reg(13) --> [1, 1, 0, 1].
|
||||
reg(14) --> [1, 1, 1, 0].
|
||||
reg(15) --> [1, 1, 1, 1].
|
||||
|
||||
operation(mov) --> [0, 0, 0, 0].
|
||||
operation(lsl) --> [0, 0, 0, 1].
|
||||
operation(asr) --> [0, 0, 1, 0].
|
||||
operation(ror) --> [0, 0, 1, 1].
|
||||
operation(and) --> [0, 1, 0, 0].
|
||||
operation(ann) --> [0, 1, 0, 1].
|
||||
operation(ior) --> [0, 1, 1, 0].
|
||||
operation(xor) --> [0, 1, 1, 1].
|
||||
operation(add) --> [1, 0, 0, 0].
|
||||
operation(sub) --> [1, 0, 0, 1].
|
||||
operation(mul) --> [1, 0, 1, 0].
|
||||
operation(div) --> [1, 0, 1, 1].
|
||||
operation(fad) --> [1, 1, 0, 0].
|
||||
operation(fsb) --> [1, 1, 0, 1].
|
||||
operation(fml) --> [1, 1, 1, 0].
|
||||
operation(fdv) --> [1, 1, 1, 1].
|
||||
|
||||
cond(mi) --> [0, 0, 0, 0].
|
||||
cond(eq) --> [0, 0, 0, 1].
|
||||
cond(cs) --> [0, 0, 1, 0].
|
||||
cond(vs) --> [0, 0, 1, 1].
|
||||
cond(ls) --> [0, 1, 0, 0].
|
||||
cond(lt) --> [0, 1, 0, 1].
|
||||
cond(le) --> [0, 1, 1, 0].
|
||||
cond(do) --> [0, 1, 1, 1].
|
||||
cond(pl) --> [1, 0, 0, 0].
|
||||
cond(ne) --> [1, 0, 0, 1].
|
||||
cond(cc) --> [1, 0, 1, 0].
|
||||
cond(vc) --> [1, 0, 1, 1].
|
||||
cond(hi) --> [1, 1, 0, 0].
|
||||
cond(ge) --> [1, 1, 0, 1].
|
||||
cond(gt) --> [1, 1, 1, 0].
|
||||
cond(nv) --> [1, 1, 1, 1].
|
||||
|
||||
pos_int16(I) :- I >= 0, I < 2^16.
|
||||
pos_int15(I) :- I >= 0, I < 2^15.
|
||||
neg_int15(I) :- I < 0, I >= -(2^15).
|
||||
int15(I) :- pos_int15(I) ; neg_int15(I).
|
||||
|
||||
|
||||
invert([], []).
|
||||
invert([1|Tail], [0|Lait]) :- invert(Tail, Lait).
|
||||
invert([0|Tail], [1|Lait]) :- invert(Tail, Lait).
|
||||
|
||||
twos_compliment(Bits, Number, Width) :-
|
||||
X is abs(Number),
|
||||
binary_number(B, X),
|
||||
length(B, Width),
|
||||
invert(B, Antibits),
|
||||
binary_number(Antibits, Y),
|
||||
Z is Y+1,
|
||||
length(Bits, Width),
|
||||
binary_number(Bits, Z).
|
||||
|
||||
% https://stackoverflow.com/a/28015816
|
||||
|
||||
canonical_binary_number([0], 0).
|
||||
canonical_binary_number([1], 1).
|
||||
canonical_binary_number([1|Bits], Number):-
|
||||
when(ground(Number),
|
||||
(Number > 1,
|
||||
Pow is floor(log(Number) / log(2)),
|
||||
Number1 is Number - 2 ^ Pow,
|
||||
( Number1 > 1
|
||||
-> Pow1 is floor(log(Number1) / log(2)) + 1
|
||||
; Pow1 = 1
|
||||
))),
|
||||
length(Bits, Pow),
|
||||
between(1, Pow, Pow1),
|
||||
length(Bits1, Pow1),
|
||||
append(Zeros, Bits1, Bits),
|
||||
maplist(=(0), Zeros),
|
||||
canonical_binary_number(Bits1, Number1),
|
||||
Number is Number1 + 2 ^ Pow.
|
||||
|
||||
binary_number( Bits , Number) :- canonical_binary_number(Bits, Number).
|
||||
binary_number([0|Bits], Number) :- binary_number(Bits, Number).
|
||||
|
||||
|
||||
% Helper code to write the list of bits as a binary file.
|
||||
|
||||
for_serial(Binary, Ser) :-
|
||||
length(Binary, LengthInBits),
|
||||
LengthInBytes is LengthInBits >> 3,
|
||||
skip(32, Caboose, []), % zero word to signal EOF to bootloader.
|
||||
append(Binary, Caboose, B),
|
||||
skip(32, G, B), % Address is zero.
|
||||
binary_number(Bits, LengthInBytes),
|
||||
collect(32, Bits, Ser, G).
|
||||
|
||||
write_binary(Name, Binary) :-
|
||||
open(Name, write, Stream, [type(binary)]),
|
||||
phrase(write_binary_(Stream), Binary),
|
||||
close(Stream).
|
||||
|
||||
write_binary_(Stream) -->
|
||||
% Handle "Endian-ness".
|
||||
collect(8, Bits3), collect(8, Bits2), collect(8, Bits1), collect(8, Bits0), !,
|
||||
{wb(Bits0, Stream), wb(Bits1, Stream), wb(Bits2, Stream), wb(Bits3, Stream)},
|
||||
write_binary_(Stream).
|
||||
write_binary_(_) --> [].
|
||||
|
||||
wb(Bits, Stream) :- binary_number(Bits, Byte), put_byte(Stream, Byte).
|
||||
|
|
@ -0,0 +1,72 @@
|
|||
-- == 1 -
|
||||
? == dup bool
|
||||
++ == 1 +
|
||||
anamorphism == [pop []] swap [dip swons] genrec
|
||||
app1 == grba infrst
|
||||
app2 == [grba swap grba swap] dip [infrst] cons ii
|
||||
app3 == 3 appN
|
||||
appN == [grabN] cons dip map disenstacken
|
||||
at == drop first
|
||||
average == [sum 1.0 *] [size] cleave /
|
||||
b == [i] dip i
|
||||
binary == unary popd
|
||||
ccons == cons cons
|
||||
cleave == fork popdd
|
||||
clop == cleave popdd
|
||||
codireco == cons dip rest cons
|
||||
dinfrirst == dip infrst
|
||||
disenstacken == ? [uncons ?] loop pop
|
||||
down_to_zero == [0 >] [dup --] while
|
||||
drop == [rest] times
|
||||
dupd == [dup] dip
|
||||
dupdd == [dup] dipd
|
||||
dupdipd == dup dipd
|
||||
enstacken == stack [clear] dip
|
||||
flatten == [] swap [concat] step
|
||||
fork == [i] app2
|
||||
fourth == rest third
|
||||
gcd == true [tuck mod dup 0 >] loop pop
|
||||
grabN == [] swap [cons] times
|
||||
grba == [stack popd] dip
|
||||
hypot == [sqr] ii + sqrt
|
||||
ifte == [nullary] dipd swap branch
|
||||
ii == [dip] dupdip i
|
||||
infra == swons swaack [i] dip swaack
|
||||
infrst == infra first
|
||||
make_generator == [codireco] ccons
|
||||
neg == 0 swap -
|
||||
nullary == [stack] dinfrirst
|
||||
of == swap at
|
||||
pam == [i] map
|
||||
pm == [+] [-] clop
|
||||
popd == [pop] dip
|
||||
popdd == [pop] dipd
|
||||
popop == pop pop
|
||||
popopd == [popop] dip
|
||||
popopdd == [popop] dipd
|
||||
primrec == [i] genrec
|
||||
product == 1 swap [*] step
|
||||
quoted == [unit] dip
|
||||
range == [0 <=] [1 - dup] anamorphism
|
||||
range_to_zero == unit [down_to_zero] infra
|
||||
reverse == [] swap shunt
|
||||
rrest == rest rest
|
||||
run == [] swap infra
|
||||
second == rest first
|
||||
shift == uncons [swons] dip
|
||||
shunt == [swons] step
|
||||
size == 0 swap [pop ++] step
|
||||
split_at == [drop] [take] clop
|
||||
sqr == dup *
|
||||
step_zero == 0 roll> step
|
||||
sum == 0 swap [+] step
|
||||
swons == swap cons
|
||||
take == [] rolldown [shift] times pop
|
||||
ternary == binary popd
|
||||
third == rest second
|
||||
unary == nullary popd
|
||||
unit == [] cons
|
||||
unquoted == [i] dip
|
||||
unswons == uncons swap
|
||||
while == swap [nullary] cons dup dipd concat loop
|
||||
x == dup i
|
||||
|
|
@ -0,0 +1,107 @@
|
|||
:- dynamic(func/3).
|
||||
:- discontiguous(func/3).
|
||||
|
||||
/*
|
||||
Copyright 2018, 2019 Simon Forman
|
||||
|
||||
This file is part of Thun
|
||||
|
||||
Thun is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Thun is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Thun. If not see <http://www.gnu.org/licenses/>.
|
||||
|
||||
*/
|
||||
/*
|
||||
Interpreter
|
||||
thun(Expression, InputStack, OutputStack)
|
||||
*/
|
||||
|
||||
thun([], S, S).
|
||||
thun( [Lit|E], Si, So) :- literal(Lit), !, thun(E, [Lit|Si], So).
|
||||
thun( [Def|E], Si, So) :- def(Def, Body), !, append(Body, E, Eo), thun(Eo, Si, So).
|
||||
thun( [Func|E], Si, So) :- func(Func, Si, S), thun(E, S, So).
|
||||
thun([Combo|E], Si, So) :- combo(Combo, Si, S, E, Eo), thun(Eo, S, So).
|
||||
|
||||
% Some error handling.
|
||||
|
||||
thun([Unknown|E], Si, So) :-
|
||||
damned_thing(Unknown),
|
||||
write("wtf? "),
|
||||
write(Unknown), nl,
|
||||
So = [[Unknown|E]|Si].
|
||||
|
||||
damned_thing(It) :-
|
||||
\+ literal(It),
|
||||
\+ def(It, _),
|
||||
\+ func(It, _, _),
|
||||
\+ combo(It, _, _, _, _).
|
||||
|
||||
|
||||
/*
|
||||
Literals
|
||||
*/
|
||||
|
||||
literal(V) :- var(V).
|
||||
literal(I) :- number(I).
|
||||
literal([]).
|
||||
literal([_|_]).
|
||||
literal(true).
|
||||
literal(false).
|
||||
|
||||
% Symbolic math expressions are literals.
|
||||
literal(_+_).
|
||||
literal(_-_).
|
||||
literal(_*_).
|
||||
literal(_/_).
|
||||
literal(_ mod _).
|
||||
|
||||
% Symbolic comparisons are literals.
|
||||
literal(_>_).
|
||||
literal(_<_).
|
||||
literal(_>=_).
|
||||
literal(_=<_).
|
||||
literal(_=:=_).
|
||||
literal(_=\=_).
|
||||
|
||||
|
||||
/*
|
||||
Functions
|
||||
*/
|
||||
|
||||
func(cons, [A, B|S], [[B|A]|S]).
|
||||
func(swap, [A, B|S], [B, A|S]).
|
||||
func(dup, [A|S], [A, A|S]).
|
||||
func(pop, [_|S], S ).
|
||||
|
||||
|
||||
/*
|
||||
Combinators
|
||||
*/
|
||||
|
||||
combo(i, [P|S], S, Ei, Eo) :- append(P, Ei, Eo).
|
||||
combo(dip, [P, X|S], S, Ei, Eo) :- append(P, [X|Ei], Eo).
|
||||
combo(dipd, [P, X, Y|S], S, Ei, Eo) :- append(P, [Y, X|Ei], Eo).
|
||||
|
||||
combo(dupdip, [P, X|S], [X|S], Ei, Eo) :- append(P, [X|Ei], Eo).
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Definitions
|
||||
*/
|
||||
|
||||
def(x, [dup, i]).
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,120 @@
|
|||
|
||||
:- op(990, xfy, =-).
|
||||
:- dynamic((=-)/2).
|
||||
|
||||
:- initialization(loop).
|
||||
|
||||
|
||||
/*
|
||||
Parser
|
||||
*/
|
||||
|
||||
joy_parse([T|S]) --> blanks, joy_term(T), blanks, joy_parse(S).
|
||||
joy_parse([]) --> [].
|
||||
|
||||
joy_term(N) --> num(N), !.
|
||||
joy_term(S) --> [0'[], !, joy_parse(S), [0']].
|
||||
joy_term(A) --> chars(Chars), !, {atom_codes(A, Chars)}.
|
||||
|
||||
|
||||
/*
|
||||
Interpreter.
|
||||
*/
|
||||
|
||||
thun([], S, S).
|
||||
|
||||
thun( [Lit|E], Si, So) :- literal(Lit), !, thun(E, [Lit|Si], So).
|
||||
thun( [Func|E], Si, So) :- func(Func, Si, S), !, thun(E, S, So).
|
||||
thun([Combo|E], Si, So) :- combo(Combo, Si, S, E, Eo), !, thun(Eo, S, So).
|
||||
|
||||
thun(Err, S, [Err|S]) :- write('Unknown term!'), nl.
|
||||
|
||||
|
||||
/*
|
||||
Literals
|
||||
*/
|
||||
|
||||
literal(V) :- var(V).
|
||||
literal(I) :- number(I).
|
||||
literal([]).
|
||||
literal([_|_]).
|
||||
literal(true).
|
||||
literal(false).
|
||||
|
||||
|
||||
/*
|
||||
Functions
|
||||
*/
|
||||
|
||||
func(cons, [A, B|S], [[B|A]|S]).
|
||||
func(swap, [A, B|S], [B, A|S]).
|
||||
func(dup, [A|S], [A, A|S]).
|
||||
func(pop, [_|S], S ).
|
||||
|
||||
func(uncons, Si, So) :- func(cons, So, Si).
|
||||
|
||||
func(+, [A, B|S], [B+A|S]).
|
||||
func(=, [A|S], [B|S]) :- B is A.
|
||||
|
||||
func(clear, _, []).
|
||||
func(stack, S, [S|S]).
|
||||
|
||||
|
||||
/*
|
||||
Definitions
|
||||
*/
|
||||
|
||||
% This is NOT the Continuation-Passing Style
|
||||
%
|
||||
% func(Name, Si, So) :- Name =- Body, thun(Body, Si, So).
|
||||
|
||||
func(inscribe, [Definition|S], S) :-
|
||||
Definition = [Name|Body],
|
||||
atom(Name),
|
||||
assertz(Name =- Body).
|
||||
|
||||
swons =- [swap, cons].
|
||||
x =- [dup, i].
|
||||
unit =- [[], cons].
|
||||
enstacken =- [stack, [clear], dip].
|
||||
|
||||
% This IS the Continuation-Passing Style
|
||||
%
|
||||
combo(Name, S, S, Ei, Eo) :- Name =- Body, append(Body, Ei, Eo).
|
||||
|
||||
/*
|
||||
Combinators
|
||||
*/
|
||||
|
||||
combo(i, [P|S], S, Ei, Eo) :- append(P, Ei, Eo).
|
||||
combo(dip, [P, X|S], S, Ei, Eo) :- append(P, [X|Ei], Eo).
|
||||
combo(dipd, [P, X, Y|S], S, Ei, Eo) :- append(P, [Y, X|Ei], Eo).
|
||||
|
||||
combo(branch, [T, _, true|S], S, Ei, Eo) :- append(T, Ei, Eo).
|
||||
combo(branch, [_, F, false|S], S, Ei, Eo) :- append(F, Ei, Eo).
|
||||
|
||||
combo(loop, [_, false|S], S, E, E ).
|
||||
combo(loop, [B, true|S], S, Ei, Eo) :- append(B, [B, loop|Ei], Eo).
|
||||
|
||||
combo(step, [_, []|S], S, E, E ).
|
||||
combo(step, [P, [X]|S], [X|S], Ei, Eo) :- !, append(P, Ei, Eo).
|
||||
combo(step, [P, [X|Z]|S], [X|S], Ei, Eo) :- append(P, [Z, P, step|Ei], Eo).
|
||||
|
||||
|
||||
/*
|
||||
Main Loop
|
||||
*/
|
||||
|
||||
loop :- line(Line), loop(Line, [], _Out).
|
||||
|
||||
loop([eof], S, S) :- !.
|
||||
loop( Line, In, Out) :-
|
||||
do_line(Line, In, S),
|
||||
write(S), nl,
|
||||
line(NextLine), !,
|
||||
loop(NextLine, S, Out).
|
||||
|
||||
|
||||
do_line(Line, In, Out) :- phrase(joy_parse(E), Line), thun(E, In, Out).
|
||||
do_line(_Line, S, S) :- write('Err'), nl.
|
||||
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
|
||||
|
||||
do(DCG) :-
|
||||
fd_domain(X, 0, 9),
|
||||
fd_labeling(X),
|
||||
number_codes(X, [C]),
|
||||
DCG = `-->`(digit(C), [C]).
|
||||
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,84 @@
|
|||
% A Tracing Meta-Interpreter for Thun
|
||||
|
||||
% See https://www.metalevel.at/acomip/
|
||||
|
||||
tmi(true).
|
||||
tmi(!).
|
||||
tmi((A, B)) :- tmi(A), tmi(B).
|
||||
tmi(number(A)) :- number(A).
|
||||
tmi(var(A)) :- var(A).
|
||||
|
||||
% Meta-logical print trace.
|
||||
% (Could also be captured in a list or something instead.)
|
||||
tmi(thun(E, Si, _)) :- frump(Si, E), fail.
|
||||
|
||||
tmi(Goal) :-
|
||||
checky(Goal),
|
||||
clause(Goal, Body), % doesn't work for e.g. +
|
||||
tmi(Body).
|
||||
|
||||
checky(Goal) :-
|
||||
Goal \= true,
|
||||
Goal \= (_,_),
|
||||
Goal \= var(_),
|
||||
Goal \= number(_),
|
||||
Goal \= !.
|
||||
|
||||
|
||||
format_state(Stack, Expression, Codes) :-
|
||||
reverse(Stack, RStack),
|
||||
phrase(format_stack(RStack), RStackCodes),
|
||||
phrase(format_stack(Expression), ExpressionCodes),
|
||||
append(RStackCodes, [32, 46, 32|ExpressionCodes], Codes).
|
||||
|
||||
|
||||
frump(Stack, Expression) :-
|
||||
format_state(Stack, Expression, Codes),
|
||||
maplist(put_code, Codes), nl.
|
||||
|
||||
% do(In) :- phrase(format_stack(In), Codes), maplist(put_code, Codes).
|
||||
|
||||
% Print Joy expressions as text.
|
||||
|
||||
format_stack(Tail) --> {var(Tail)}, !, [46, 46, 46].
|
||||
format_stack([T]) --> format_term(T), !.
|
||||
format_stack([T|S]) --> format_term(T), " ", format_stack(S).
|
||||
format_stack([]) --> [].
|
||||
|
||||
format_term(N) --> {number(N), number_codes(N, Codes)}, Codes.
|
||||
format_term(A) --> { atom(A), atom_codes(A, Codes)}, Codes.
|
||||
format_term([A|As]) --> "[", format_stack([A|As]), "]".
|
||||
|
||||
|
||||
|
||||
/*
|
||||
|
||||
[debug] ?- tmi(thun([1, 2, swap], Si, So)).
|
||||
_-[1, 2, swap].
|
||||
[1|_]-[2, swap].
|
||||
[2, 1|_]-[swap].
|
||||
[1, 2|_]-[].
|
||||
So = [1, 2|Si] ;
|
||||
false.
|
||||
|
||||
[debug] ?- tmi(thun([[1], 2, swons], Si, So)).
|
||||
_-[[1], 2, swons].
|
||||
[[1]|_]-[2, swons].
|
||||
[2, [1]|_]-[swons].
|
||||
[2, [1]|_]-[swap, cons].
|
||||
[[1], 2|_]-[cons].
|
||||
[[2, 1]|_]-[].
|
||||
So = [[2, 1]|Si] .
|
||||
|
||||
[debug] ?- tmi(thun([[1], 2, [swons], i], Si, So)).
|
||||
_-[[1], 2, [swons], i].
|
||||
[[1]|_]-[2, [swons], i].
|
||||
[2, [1]|_]-[[swons], i].
|
||||
[[swons], 2, [1]|_]-[i].
|
||||
[2, [1]|_]-[swons].
|
||||
[2, [1]|_]-[swap, cons].
|
||||
[[1], 2|_]-[cons].
|
||||
[[2, 1]|_]-[].
|
||||
So = [[2, 1]|Si] .
|
||||
|
||||
*/
|
||||
|
|
@ -0,0 +1,350 @@
|
|||
:- dynamic(func/3).
|
||||
:- discontiguous(func/3).
|
||||
|
||||
/*
|
||||
Copyright © 2018, 2019 Simon Forman
|
||||
|
||||
This file is part of Thun
|
||||
|
||||
Thun is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Thun is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Thun. If not see <http://www.gnu.org/licenses/>.
|
||||
|
||||
*/
|
||||
:- dynamic(def/2).
|
||||
|
||||
|
||||
/*
|
||||
|
||||
To handle comparision operators the possibility of exceptions due to
|
||||
insufficiently instantiated arguments must be handled. First try to make
|
||||
the comparison and set the result to a Boolean atom. If an exception
|
||||
happens just leave the comparison expression as the result and some other
|
||||
function or combinator will deal with it. Example:
|
||||
|
||||
func(>, [A, B|S], [C|S]) :- catch(
|
||||
(B > A -> C=true ; C=false),
|
||||
_,
|
||||
C=(B>A) % in case of error.
|
||||
).
|
||||
|
||||
To save on conceptual overhead I've defined a term_expansion/2 that sets
|
||||
up the func/3 for each op.
|
||||
*/
|
||||
|
||||
term_expansion(comparison_operator(X), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [X, B, A], catch((F -> C=true ; C=false), _, C=F))).
|
||||
|
||||
% I don't use Prolog-compatible op symbols in all cases.
|
||||
term_expansion(comparison_operator(X, Y), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [Y, B, A], catch((F -> C=true ; C=false), _, C=F))).
|
||||
|
||||
% Likewise for math operators, try to evaluate, otherwise use the
|
||||
% symbolic form.
|
||||
|
||||
term_expansion(math_operator(X), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [X, B, A], catch(C is F, _, C=F))).
|
||||
|
||||
term_expansion(math_operator(X, Y), (func(X, [A, B|S], [C|S]) :-
|
||||
F =.. [Y, B, A], catch(C is F, _, C=F))).
|
||||
|
||||
|
||||
/*
|
||||
An entry point.
|
||||
*/
|
||||
|
||||
joy(InputString, StackIn, StackOut) :-
|
||||
phrase(joy_parse(Expression), InputString), !,
|
||||
thun(Expression, StackIn, StackOut).
|
||||
|
||||
/*
|
||||
Parser
|
||||
|
||||
joy :== number | '[' joy* ']' | atom
|
||||
|
||||
*/
|
||||
|
||||
joy_parse([T|J]) --> blanks, joy_term(T), blanks, joy_parse(J).
|
||||
joy_parse([]) --> [].
|
||||
|
||||
joy_term(N) --> number(N), !.
|
||||
joy_term(J) --> "[", !, joy_parse(J), "]".
|
||||
joy_term(C) --> symbol(C).
|
||||
|
||||
symbol(C) --> chars(Chars), !, {Chars \= [61, 61], atom_string(C, Chars)}.
|
||||
|
||||
chars([Ch|Rest]) --> char(Ch), chars(Rest).
|
||||
chars([Ch]) --> char(Ch).
|
||||
|
||||
char(Ch) --> [Ch], {Ch \== 91, Ch \== 93, code_type(Ch, graph)}.
|
||||
|
||||
|
||||
/*
|
||||
Interpreter
|
||||
thun(Expression, InputStack, OutputStack)
|
||||
*/
|
||||
|
||||
thun([], S, S).
|
||||
thun( [Lit|E], Si, So) :- literal(Lit), !, thun(E, [Lit|Si], So).
|
||||
thun( [Def|E], Si, So) :- def(Def, Body), !, append(Body, E, Eo), thun(Eo, Si, So).
|
||||
thun( [Func|E], Si, So) :- func(Func, Si, S), thun(E, S, So).
|
||||
thun([Combo|E], Si, So) :- combo(Combo, Si, S, E, Eo), thun(Eo, S, So).
|
||||
|
||||
% Some error handling.
|
||||
|
||||
thun([Unknown|E], Si, So) :-
|
||||
damned_thing(Unknown),
|
||||
write("wtf? "),
|
||||
writeln(Unknown),
|
||||
So = [[Unknown|E]|Si].
|
||||
|
||||
damned_thing(It) :-
|
||||
\+ literal(It),
|
||||
\+ def(It, _),
|
||||
\+ func(It, _, _),
|
||||
\+ combo(It, _, _, _, _).
|
||||
|
||||
|
||||
/*
|
||||
Literals
|
||||
*/
|
||||
|
||||
literal(V) :- var(V).
|
||||
literal(I) :- number(I).
|
||||
literal([]).
|
||||
literal([_|_]).
|
||||
literal(true).
|
||||
literal(false).
|
||||
|
||||
% Symbolic math expressions are literals.
|
||||
literal(_+_).
|
||||
literal(_-_).
|
||||
literal(_*_).
|
||||
literal(_/_).
|
||||
literal(_ mod _).
|
||||
|
||||
% Symbolic comparisons are literals.
|
||||
literal(_>_).
|
||||
literal(_<_).
|
||||
literal(_>=_).
|
||||
literal(_=<_).
|
||||
literal(_=:=_).
|
||||
literal(_=\=_).
|
||||
|
||||
|
||||
/*
|
||||
Functions
|
||||
*/
|
||||
|
||||
func(cons, [A, B|S], [[B|A]|S]).
|
||||
func(swap, [A, B|S], [B, A|S]).
|
||||
func(dup, [A|S], [A, A|S]).
|
||||
func(pop, [_|S], S ).
|
||||
|
||||
% Symbolic math. Compute the answer, or derivative, or whatever, later.
|
||||
math_operator(+).
|
||||
math_operator(-).
|
||||
math_operator(*).
|
||||
math_operator(/).
|
||||
math_operator(mod).
|
||||
|
||||
% Attempt to calculate the value of a symbolic math expression.
|
||||
func(calc, [A|S], [B|S]) :- B is A.
|
||||
|
||||
func(sqrt, [A|S], [sqrt(A)|S]).
|
||||
|
||||
func(concat, [A, B|S], [C|S]) :- append(B, A, C).
|
||||
func(flatten, [A|S], [B|S]) :- flatten(A, B).
|
||||
func(swaack, [R|S], [S|R]).
|
||||
func(stack, S , [S|S]).
|
||||
func(clear, _ , []).
|
||||
func(first, [[X|_]|S], [X|S]).
|
||||
func(rest, [[_|X]|S], [X|S]).
|
||||
func(unit, [X|S], [[X]|S]).
|
||||
|
||||
func(rolldown, [A, B, C|S], [B, C, A|S]).
|
||||
func(dupd, [A, B|S], [A, B, B|S]).
|
||||
func(over, [A, B|S], [B, A, B|S]).
|
||||
func(tuck, [A, B|S], [A, B, A|S]).
|
||||
|
||||
func(shift, [[B|A], C|D], [A, [B|C]|D]).
|
||||
|
||||
func(rollup, Si, So) :- func(rolldown, So, Si).
|
||||
func(uncons, Si, So) :- func(cons, So, Si).
|
||||
|
||||
func(bool, [ 0|S], [false|S]) :- !.
|
||||
func(bool, [ 0.0|S], [false|S]) :- !.
|
||||
func(bool, [ []|S], [false|S]) :- !.
|
||||
func(bool, [ ""|S], [false|S]) :- !.
|
||||
func(bool, [false|S], [false|S]) :- !.
|
||||
|
||||
func(bool, [_|S], [true|S]).
|
||||
|
||||
comparison_operator(>).
|
||||
comparison_operator(<).
|
||||
comparison_operator(>=).
|
||||
comparison_operator(<=, =<).
|
||||
comparison_operator(=, =:=).
|
||||
comparison_operator(<>, =\=).
|
||||
|
||||
|
||||
/*
|
||||
Definitions
|
||||
*/
|
||||
|
||||
joy_def(def(Def, Body)) --> symbol(Def), blanks, "==", joy_parse(Body).
|
||||
|
||||
joy_defs --> blanks, joy_def(Def), {assert_def(Def)}, blanks, joy_defs.
|
||||
joy_defs --> [].
|
||||
|
||||
assert_defs(DefsFile) :-
|
||||
read_file_to_codes(DefsFile, Codes, []),
|
||||
phrase(joy_defs, Codes).
|
||||
|
||||
assert_def(def(Def, Body)) :-
|
||||
retractall(def(Def, _)),
|
||||
assertz(def(Def, Body)).
|
||||
|
||||
:- assert_defs("defs.txt").
|
||||
|
||||
|
||||
/*
|
||||
Combinators
|
||||
*/
|
||||
|
||||
combo(i, [P|S], S, Ei, Eo) :- append(P, Ei, Eo).
|
||||
combo(dip, [P, X|S], S, Ei, Eo) :- append(P, [X|Ei], Eo).
|
||||
combo(dipd, [P, X, Y|S], S, Ei, Eo) :- append(P, [Y, X|Ei], Eo).
|
||||
|
||||
combo(dupdip, [P, X|S], [X|S], Ei, Eo) :- append(P, [X|Ei], Eo).
|
||||
|
||||
combo(branch, [T, _, true|S], S, Ei, Eo) :- append(T, Ei, Eo).
|
||||
combo(branch, [_, F, false|S], S, Ei, Eo) :- append(F, Ei, Eo).
|
||||
combo(branch, [T, F, Expr|S], S, Ei, Eo) :-
|
||||
\+ Expr = true, \+ Expr = false,
|
||||
catch( % Try Expr and do one or the other,
|
||||
(Expr -> append(T, Ei, Eo) ; append(F, Ei, Eo)),
|
||||
_, % If Expr don't grok, try both branches.
|
||||
(append(T, Ei, Eo) ; append(F, Ei, Eo))
|
||||
).
|
||||
|
||||
combo(loop, [_, false|S], S, E, E ).
|
||||
combo(loop, [B, true|S], S, Ei, Eo) :- append(B, [B, loop|Ei], Eo).
|
||||
combo(loop, [B, Expr|S], S, Ei, Eo) :-
|
||||
\+ Expr = true, \+ Expr = false,
|
||||
catch( % Try Expr and do one or the other,
|
||||
(Expr -> append(B, [B, loop|Ei], Eo) ; Ei=Eo),
|
||||
_, % If Expr don't grok, try both branches.
|
||||
(Ei=Eo ; append(B, [B, loop|Ei], Eo))
|
||||
).
|
||||
|
||||
combo(step, [_, []|S], S, E, E ).
|
||||
combo(step, [P, [X]|S], [X|S], Ei, Eo) :- !, append(P, Ei, Eo).
|
||||
combo(step, [P, [X|Z]|S], [X|S], Ei, Eo) :- append(P, [Z, P, step|Ei], Eo).
|
||||
|
||||
combo(times, [_, 0|S], S, E, E ).
|
||||
combo(times, [P, 1|S], S, Ei, Eo) :- append(P, Ei, Eo).
|
||||
combo(times, [P, N|S], S, Ei, Eo) :- N #>= 2, M #= N - 1, append(P, [M, P, times|Ei], Eo).
|
||||
combo(times, [_, N|S], S, _, _ ) :- N #< 0, fail.
|
||||
|
||||
combo(genrec, [R1, R0, Then, If|S],
|
||||
[ Else, Then, If|S], E, [ifte|E]) :-
|
||||
Quoted = [If, Then, R0, R1, genrec],
|
||||
append(R0, [Quoted|R1], Else).
|
||||
|
||||
/*
|
||||
This is a crude but servicable implementation of the map combinator.
|
||||
|
||||
Obviously it would be nice to take advantage of the implied parallelism.
|
||||
Instead the quoted program, stack, and terms in the input list are
|
||||
transformed to simple Joy expressions that run the quoted program on
|
||||
prepared copies of the stack that each have one of the input terms on
|
||||
top. These expressions are collected in a list and the whole thing is
|
||||
evaluated (with infra) on an empty list, which becomes the output list.
|
||||
|
||||
The chief advantage of doing it this way (as opposed to using Prolog's
|
||||
map) is that the whole state remains in the pending expression, so
|
||||
there's nothing stashed in Prolog's call stack. This preserves the nice
|
||||
property that you can interrupt the Joy evaluation and save or transmit
|
||||
the stack+expression knowing that you have all the state.
|
||||
*/
|
||||
|
||||
combo(map, [_, []|S], [[]|S], E, E ) :- !.
|
||||
combo(map, [P, List|S], [Mapped, []|S], E, [infra|E]) :-
|
||||
prepare_mapping(P, S, List, Mapped).
|
||||
|
||||
% Set up a program for each term in ListIn
|
||||
%
|
||||
% [term S] [P] infrst
|
||||
%
|
||||
% prepare_mapping(P, S, ListIn, ListOut).
|
||||
|
||||
prepare_mapping(P, S, In, Out) :- prepare_mapping(P, S, In, [], Out).
|
||||
|
||||
prepare_mapping( _, _, [], Out, Out) :- !.
|
||||
prepare_mapping( P, S, [T|In], Acc, Out) :-
|
||||
prepare_mapping(P, S, In, [[T|S], P, infrst|Acc], Out).
|
||||
|
||||
|
||||
/*
|
||||
Compiler
|
||||
*/
|
||||
|
||||
joy_compile(Name, Expression) :- jcmpl(Name, Expression, Rule), asserta(Rule).
|
||||
|
||||
show_joy_compile(Name, Expression) :- jcmpl(Name, Expression, Rule), portray_clause(Rule).
|
||||
|
||||
jcmpl(Name, Expression, Rule) :-
|
||||
call_residue_vars(thun(Expression, Si, So), Term),
|
||||
copy_term(Term, Term, Gs),
|
||||
Head =.. [func, Name, Si, So],
|
||||
rule(Head, Gs, Rule).
|
||||
|
||||
rule(Head, [], Head ).
|
||||
rule(Head, [A|B], Head :- maplist(call, [A|B])).
|
||||
|
||||
sjc(Name, InputString) :- phrase(joy_parse(E), InputString), show_joy_compile(Name, E).
|
||||
|
||||
|
||||
% Simple DCGs to expand/contract definitions.
|
||||
|
||||
expando, Body --> [Def], {def(Def, Body)}.
|
||||
contracto, [Def] --> {def(Def, Body)}, Body.
|
||||
|
||||
% Apply expando/contracto more than once, and descend into sub-lists.
|
||||
% The K term is one of expando or contracto, and the J term is used
|
||||
% on sub-lists, i.e. expando/grow and contracto/shrink.
|
||||
% BTW, "rebo" is a meaningless name, don't break your brain
|
||||
% trying to figure it out.
|
||||
|
||||
rebo(K, J) --> K , rebo(K, J).
|
||||
rebo(K, J), [E] --> [[H|T]], !, {call(J, [H|T], E)}, rebo(K, J).
|
||||
rebo(K, J), [A] --> [ A ], !, rebo(K, J).
|
||||
rebo(_, _) --> [].
|
||||
|
||||
to_fixed_point(DCG, Ei, Eo) :-
|
||||
phrase(DCG, Ei, E), % Apply DCG...
|
||||
(Ei=E -> Eo=E ; to_fixed_point(DCG, E, Eo)). % ...until a fixed-point is reached.
|
||||
|
||||
grow --> to_fixed_point(rebo(expando, grow )).
|
||||
shrink --> to_fixed_point(rebo(contracto, shrink)).
|
||||
|
||||
|
||||
% format_n(N) --> {number(N), !, number_codes(N, Codes)}, Codes.
|
||||
% format_n(N) --> signed_digits(Codes), !, {number_codes(N, Codes)}.
|
||||
|
||||
% signed_digits([45|Codes]) --> [45], !, digits(Codes).
|
||||
% signed_digits( Codes ) --> digits(Codes).
|
||||
|
||||
% digits([Ch|Chars]) --> [Ch], {code_type(Ch, digit)}, digits(Chars).
|
||||
% digits([]), [Ch] --> [Ch], {code_type(Ch, space) ; Ch=0'] }.
|
||||
% digits([], [], _). % Match if followed by space, ], or nothing.
|
||||
|
|
@ -0,0 +1,37 @@
|
|||
|
||||
|
||||
% Line is the next new-line delimited line from standard input stream as
|
||||
% a list of character codes.
|
||||
|
||||
line(Line) :- get_code(X), line(X, Line).
|
||||
|
||||
line(10, []) :- !. % break on new-lines.
|
||||
line(-1, [eof]) :- !. % break on EOF
|
||||
line(X, [X|Line]) :- get_code(Y), !, line(Y, Line).
|
||||
|
||||
|
||||
chars([Ch|Rest]) --> char(Ch), chars(Rest).
|
||||
chars([Ch]) --> char(Ch).
|
||||
|
||||
char(Ch) --> [Ch], { Ch \== 0'[, Ch \== 0'], Ch >= 33, Ch =< 126 }.
|
||||
|
||||
|
||||
blanks --> blank, !, blanks.
|
||||
blanks --> [].
|
||||
|
||||
blank --> [32].
|
||||
|
||||
|
||||
% TODO: negative numbers, floats, scientific notation.
|
||||
|
||||
num(N) --> digits(Codes), !, { num(N, Codes) }.
|
||||
|
||||
num(_, []) :- fail, !.
|
||||
num(N, [C|Codes]) :- number_codes(N, [C|Codes]).
|
||||
|
||||
|
||||
digits([H|T]) --> digit(H), !, digits(T).
|
||||
digits([]) --> [].
|
||||
|
||||
digit(C) --> [C], { nonvar(C), C =< 57, C >= 48 }.
|
||||
|
||||
Loading…
Reference in New Issue